Defining Populations and Predicting Future Suitable Niche Space in the Geographically Disjunct, Narrowly Endemic Leafy Prairie-Clover (<i>Dalea foliosa</i>; Fabaceae)
Conservation actions for rare species are often based on estimates of population size and number, which are challenging to capture in natural systems. Instead, many definitions of populations rely on arbitrarily defined distances between occurrences, which is not necessarily biologically meaningful...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-02-01
|
Series: | Plants |
Subjects: | |
Online Access: | https://www.mdpi.com/2223-7747/13/4/495 |
_version_ | 1827342899924172800 |
---|---|
author | Ashley B. Morris Clayton J. Visger Skyler J. Fox Cassandra Scalf Sunny Fleming Geoff Call |
author_facet | Ashley B. Morris Clayton J. Visger Skyler J. Fox Cassandra Scalf Sunny Fleming Geoff Call |
author_sort | Ashley B. Morris |
collection | DOAJ |
description | Conservation actions for rare species are often based on estimates of population size and number, which are challenging to capture in natural systems. Instead, many definitions of populations rely on arbitrarily defined distances between occurrences, which is not necessarily biologically meaningful despite having utility from a conservation management perspective. Here, we introduce a case study using the narrowly endemic and highly geographically disjunct leafy prairie-clover (<i>Dalea foliosa</i>), for which we use nuclear microsatellite loci to assess the current delimitations of populations and management units across its entire known range. We model future potential suitable niche space for the species to assess how currently defined populations could fare under predicted changes in climate over the next 50 years. Our results indicate that genetic variation within the species is extremely limited, particularly so in the distal portions of its range (Illinois and Alabama). Within the core of its range (Tennessee), genetic structure is not consistent with populations as currently defined. Our models indicate that predicted suitable niche space may only marginally overlap with the geology associated with this species (limestone glades and dolomite prairies) by 2070. Additional studies are needed to evaluate the extent to which populations are ecologically adapted to local environments and what role this could play in future translocation efforts. |
first_indexed | 2024-03-07T22:17:17Z |
format | Article |
id | doaj.art-b9a8336cabde4901b7b7a9aeee2407eb |
institution | Directory Open Access Journal |
issn | 2223-7747 |
language | English |
last_indexed | 2024-03-07T22:17:17Z |
publishDate | 2024-02-01 |
publisher | MDPI AG |
record_format | Article |
series | Plants |
spelling | doaj.art-b9a8336cabde4901b7b7a9aeee2407eb2024-02-23T15:31:53ZengMDPI AGPlants2223-77472024-02-0113449510.3390/plants13040495Defining Populations and Predicting Future Suitable Niche Space in the Geographically Disjunct, Narrowly Endemic Leafy Prairie-Clover (<i>Dalea foliosa</i>; Fabaceae)Ashley B. Morris0Clayton J. Visger1Skyler J. Fox2Cassandra Scalf3Sunny Fleming4Geoff Call5Department of Biology, Furman University, Greenville, SC 29613, USADepartment of Biological Sciences, California State University, Sacramento, CA 95819, USADepartment of Biology, Furman University, Greenville, SC 29613, USAIndependent Researcher, San Antonio, TX 78247, USAEnvironmental Systems Research Institute, Inc. (ESRI), Redlands, CA 92373, USATennessee Ecological Services Field Office, U.S. Fish and Wildlife Service, Cookeville, TN 38501, USAConservation actions for rare species are often based on estimates of population size and number, which are challenging to capture in natural systems. Instead, many definitions of populations rely on arbitrarily defined distances between occurrences, which is not necessarily biologically meaningful despite having utility from a conservation management perspective. Here, we introduce a case study using the narrowly endemic and highly geographically disjunct leafy prairie-clover (<i>Dalea foliosa</i>), for which we use nuclear microsatellite loci to assess the current delimitations of populations and management units across its entire known range. We model future potential suitable niche space for the species to assess how currently defined populations could fare under predicted changes in climate over the next 50 years. Our results indicate that genetic variation within the species is extremely limited, particularly so in the distal portions of its range (Illinois and Alabama). Within the core of its range (Tennessee), genetic structure is not consistent with populations as currently defined. Our models indicate that predicted suitable niche space may only marginally overlap with the geology associated with this species (limestone glades and dolomite prairies) by 2070. Additional studies are needed to evaluate the extent to which populations are ecologically adapted to local environments and what role this could play in future translocation efforts.https://www.mdpi.com/2223-7747/13/4/495conservation genetics<i>Dalea foliosa</i>dolomite prairieslimestone gladesmicrosatellitespopulation boundaries |
spellingShingle | Ashley B. Morris Clayton J. Visger Skyler J. Fox Cassandra Scalf Sunny Fleming Geoff Call Defining Populations and Predicting Future Suitable Niche Space in the Geographically Disjunct, Narrowly Endemic Leafy Prairie-Clover (<i>Dalea foliosa</i>; Fabaceae) Plants conservation genetics <i>Dalea foliosa</i> dolomite prairies limestone glades microsatellites population boundaries |
title | Defining Populations and Predicting Future Suitable Niche Space in the Geographically Disjunct, Narrowly Endemic Leafy Prairie-Clover (<i>Dalea foliosa</i>; Fabaceae) |
title_full | Defining Populations and Predicting Future Suitable Niche Space in the Geographically Disjunct, Narrowly Endemic Leafy Prairie-Clover (<i>Dalea foliosa</i>; Fabaceae) |
title_fullStr | Defining Populations and Predicting Future Suitable Niche Space in the Geographically Disjunct, Narrowly Endemic Leafy Prairie-Clover (<i>Dalea foliosa</i>; Fabaceae) |
title_full_unstemmed | Defining Populations and Predicting Future Suitable Niche Space in the Geographically Disjunct, Narrowly Endemic Leafy Prairie-Clover (<i>Dalea foliosa</i>; Fabaceae) |
title_short | Defining Populations and Predicting Future Suitable Niche Space in the Geographically Disjunct, Narrowly Endemic Leafy Prairie-Clover (<i>Dalea foliosa</i>; Fabaceae) |
title_sort | defining populations and predicting future suitable niche space in the geographically disjunct narrowly endemic leafy prairie clover i dalea foliosa i fabaceae |
topic | conservation genetics <i>Dalea foliosa</i> dolomite prairies limestone glades microsatellites population boundaries |
url | https://www.mdpi.com/2223-7747/13/4/495 |
work_keys_str_mv | AT ashleybmorris definingpopulationsandpredictingfuturesuitablenichespaceinthegeographicallydisjunctnarrowlyendemicleafyprairiecloveridaleafoliosaifabaceae AT claytonjvisger definingpopulationsandpredictingfuturesuitablenichespaceinthegeographicallydisjunctnarrowlyendemicleafyprairiecloveridaleafoliosaifabaceae AT skylerjfox definingpopulationsandpredictingfuturesuitablenichespaceinthegeographicallydisjunctnarrowlyendemicleafyprairiecloveridaleafoliosaifabaceae AT cassandrascalf definingpopulationsandpredictingfuturesuitablenichespaceinthegeographicallydisjunctnarrowlyendemicleafyprairiecloveridaleafoliosaifabaceae AT sunnyfleming definingpopulationsandpredictingfuturesuitablenichespaceinthegeographicallydisjunctnarrowlyendemicleafyprairiecloveridaleafoliosaifabaceae AT geoffcall definingpopulationsandpredictingfuturesuitablenichespaceinthegeographicallydisjunctnarrowlyendemicleafyprairiecloveridaleafoliosaifabaceae |