Automatic Detection of Microaneurysms in Fundus Images Using an Ensemble-Based Segmentation Method

In this study, a novel method for automatic microaneurysm detection in color fundus images is presented. The proposed method is based on three main steps: (1) image breakdown to smaller image patches, (2) inference to segmentation models, and (3) reconstruction of the predicted segmentation map from...

Full description

Bibliographic Details
Main Authors: Vidas Raudonis, Arturas Kairys, Rasa Verkauskiene, Jelizaveta Sokolovska, Goran Petrovski, Vilma Jurate Balciuniene, Vallo Volke
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/23/7/3431
_version_ 1797607070616256512
author Vidas Raudonis
Arturas Kairys
Rasa Verkauskiene
Jelizaveta Sokolovska
Goran Petrovski
Vilma Jurate Balciuniene
Vallo Volke
author_facet Vidas Raudonis
Arturas Kairys
Rasa Verkauskiene
Jelizaveta Sokolovska
Goran Petrovski
Vilma Jurate Balciuniene
Vallo Volke
author_sort Vidas Raudonis
collection DOAJ
description In this study, a novel method for automatic microaneurysm detection in color fundus images is presented. The proposed method is based on three main steps: (1) image breakdown to smaller image patches, (2) inference to segmentation models, and (3) reconstruction of the predicted segmentation map from output patches. The proposed segmentation method is based on an ensemble of three individual deep networks, such as U-Net, ResNet34-UNet and UNet++. The performance evaluation is based on the calculation of the Dice score and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mi>o</mi><mi>U</mi></mrow></semantics></math></inline-formula> values. The ensemble-based model achieved higher Dice score (0.95) and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mi>o</mi><mi>U</mi></mrow></semantics></math></inline-formula> (0.91) values compared to other network architectures. The proposed ensemble-based model demonstrates the high practical application potential for detection of early-stage diabetic retinopathy in color fundus images.
first_indexed 2024-03-11T05:26:07Z
format Article
id doaj.art-b9aad7cffc8f44ecba4fe5a2b3dd1c0b
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-11T05:26:07Z
publishDate 2023-03-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-b9aad7cffc8f44ecba4fe5a2b3dd1c0b2023-11-17T17:32:26ZengMDPI AGSensors1424-82202023-03-01237343110.3390/s23073431Automatic Detection of Microaneurysms in Fundus Images Using an Ensemble-Based Segmentation MethodVidas Raudonis0Arturas Kairys1Rasa Verkauskiene2Jelizaveta Sokolovska3Goran Petrovski4Vilma Jurate Balciuniene5Vallo Volke6Automation Department, Kaunas University of Technology, 51368 Kaunas, LithuaniaAutomation Department, Kaunas University of Technology, 51368 Kaunas, LithuaniaInstitute of Endocrinology, Lithuanian University of Health Sciences, 50140 Kaunas, LithuaniaFaculty of Medicine, University of Latvia, 1004 Riga, LatviaCenter of Eye Research and Innovative Diagnostics, Department of Ophthalmology, Oslo University Hospital and Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, NorwayLithuanian University of Health Sciences, 44307 Kaunas, LithuaniaFaculty of Medicine, Tartu University, 50411 Tartu, EstoniaIn this study, a novel method for automatic microaneurysm detection in color fundus images is presented. The proposed method is based on three main steps: (1) image breakdown to smaller image patches, (2) inference to segmentation models, and (3) reconstruction of the predicted segmentation map from output patches. The proposed segmentation method is based on an ensemble of three individual deep networks, such as U-Net, ResNet34-UNet and UNet++. The performance evaluation is based on the calculation of the Dice score and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mi>o</mi><mi>U</mi></mrow></semantics></math></inline-formula> values. The ensemble-based model achieved higher Dice score (0.95) and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mi>o</mi><mi>U</mi></mrow></semantics></math></inline-formula> (0.91) values compared to other network architectures. The proposed ensemble-based model demonstrates the high practical application potential for detection of early-stage diabetic retinopathy in color fundus images.https://www.mdpi.com/1424-8220/23/7/3431diabetic retinopathy (DR)image segmentationmicroaneurysms (MAs)encoder-decoder deep neural network
spellingShingle Vidas Raudonis
Arturas Kairys
Rasa Verkauskiene
Jelizaveta Sokolovska
Goran Petrovski
Vilma Jurate Balciuniene
Vallo Volke
Automatic Detection of Microaneurysms in Fundus Images Using an Ensemble-Based Segmentation Method
Sensors
diabetic retinopathy (DR)
image segmentation
microaneurysms (MAs)
encoder-decoder deep neural network
title Automatic Detection of Microaneurysms in Fundus Images Using an Ensemble-Based Segmentation Method
title_full Automatic Detection of Microaneurysms in Fundus Images Using an Ensemble-Based Segmentation Method
title_fullStr Automatic Detection of Microaneurysms in Fundus Images Using an Ensemble-Based Segmentation Method
title_full_unstemmed Automatic Detection of Microaneurysms in Fundus Images Using an Ensemble-Based Segmentation Method
title_short Automatic Detection of Microaneurysms in Fundus Images Using an Ensemble-Based Segmentation Method
title_sort automatic detection of microaneurysms in fundus images using an ensemble based segmentation method
topic diabetic retinopathy (DR)
image segmentation
microaneurysms (MAs)
encoder-decoder deep neural network
url https://www.mdpi.com/1424-8220/23/7/3431
work_keys_str_mv AT vidasraudonis automaticdetectionofmicroaneurysmsinfundusimagesusinganensemblebasedsegmentationmethod
AT arturaskairys automaticdetectionofmicroaneurysmsinfundusimagesusinganensemblebasedsegmentationmethod
AT rasaverkauskiene automaticdetectionofmicroaneurysmsinfundusimagesusinganensemblebasedsegmentationmethod
AT jelizavetasokolovska automaticdetectionofmicroaneurysmsinfundusimagesusinganensemblebasedsegmentationmethod
AT goranpetrovski automaticdetectionofmicroaneurysmsinfundusimagesusinganensemblebasedsegmentationmethod
AT vilmajuratebalciuniene automaticdetectionofmicroaneurysmsinfundusimagesusinganensemblebasedsegmentationmethod
AT vallovolke automaticdetectionofmicroaneurysmsinfundusimagesusinganensemblebasedsegmentationmethod