Summary: | This research highlights the utilization of two viscosity models to study the involvement of variable properties in heat and momentum transport in a rotating Carreau fluid past over a cone. The rheology of the Carreau material is assessed by the variable dynamic viscosity over the heating cone. The transport of momentum phenomenon is modeled by considering generalized Ohm’s law in Carreau liquid and thermal transport in derived by considering variable thermal conductivity, heat flux model. The considered model is derived in the form of nonlinear PDEs with boundary layer analysis. The nonlinear PDEs are converted into coupled ODEs by using approximate transformation and converted equations are solved numerically by finite element methodology. The impact of numerous parameters is displayed graphically, and their behavior is discussed in detail.
|