Reduced female fertility due to sequestration of RNA Pol II by pervasive transcription in exosome RNase-depleted oocytes

Summary: Perturbing the transcriptome of mammalian oocytes results in meiotic failure. We previously reported that RNA-exosome-associated RNase, EXOSC10, degrades unwanted protein-coding RNA and processes ribosomal RNA to ensure proper oocyte maturation. Here, we establish oocyte-specific knockout m...

Full description

Bibliographic Details
Main Authors: Di Wu, Jurrien Dean
Format: Article
Language:English
Published: Elsevier 2023-10-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124723012597
Description
Summary:Summary: Perturbing the transcriptome of mammalian oocytes results in meiotic failure. We previously reported that RNA-exosome-associated RNase, EXOSC10, degrades unwanted protein-coding RNA and processes ribosomal RNA to ensure proper oocyte maturation. Here, we establish oocyte-specific knockout mice of another RNA-exosome-associated RNase, DIS3. Mutant females (Dis3cKO) exhibit significantly reduced fertility because oocytes arrest after the growth phase. Single-oocyte RNA sequencing (RNA-seq) and CUT&Tag analyses show that DIS3 degrades intergenic RNA and mediates transcription silencing that is essential for chromatin condensation and resumption of meiosis. Dis3cKO oocytes exhibit elevated H3K27me3 in a pre-defined manner due to insufficient demethylation. During oocyte growth, EXOSC10 functions with DIS3 to degrade intergenic RNA. Double-knockout oocytes have earlier growth defects and more accumulated transcripts. We conclude that RNA exosomes synergistically degrade unwanted RNA and mediate transcription termination to ensure transcriptome integrity during oocyte development.
ISSN:2211-1247