Rolling Texture of Cu–30%Zn Alloy Using Taylor Model Based on Twinning and Coplanar Slip

A modified Taylor model, hereafter referred to as the MTCS (Mechanical-Twinning-with-Coplanar-Slip)-model, is proposed in the present work to predict weak texture components in the shear bands of brass-type fcc metals with a twin–matrix lamellar (TML) structure. The MTCS-model considers two boundary...

Full description

Bibliographic Details
Main Authors: Shih-Chieh Hsiao, Sin-Ying Lin, Huang-Jun Chen, Ping-Yin Hsieh, Jui-Chao Kuo
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/11/11/1351
_version_ 1797510750937284608
author Shih-Chieh Hsiao
Sin-Ying Lin
Huang-Jun Chen
Ping-Yin Hsieh
Jui-Chao Kuo
author_facet Shih-Chieh Hsiao
Sin-Ying Lin
Huang-Jun Chen
Ping-Yin Hsieh
Jui-Chao Kuo
author_sort Shih-Chieh Hsiao
collection DOAJ
description A modified Taylor model, hereafter referred to as the MTCS (Mechanical-Twinning-with-Coplanar-Slip)-model, is proposed in the present work to predict weak texture components in the shear bands of brass-type fcc metals with a twin–matrix lamellar (TML) structure. The MTCS-model considers two boundary conditions (i.e., twinning does not occur in previously twinned areas and coplanar slip occurs in the TML region) to simulate the rolling texture of Cu–30%Zn. In the first approximation, texture simulation using the MTCS-model revealed brass-type textures, including Y{1 1 1} <1 1 2> and Z{1 1 1} <1 1 0> components, which correspond to the observed experimental textures. Single orientations of C<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo> </mo><mn>1</mn><mo> </mo><mn>2</mn></mrow><mo>)</mo></mrow><mrow><mo>[</mo><mrow><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="true">¯</mo></mover><mo> </mo><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="true">¯</mo></mover><mo> </mo><mn>1</mn></mrow><mo>]</mo></mrow></mrow></semantics></math></inline-formula> and S’<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo> </mo><mn>2</mn><mo> </mo><mn>3</mn></mrow><mo>)</mo></mrow><mrow><mo>[</mo><mrow><mover accent="true"><mn>4</mn><mo>¯</mo></mover><mo> </mo><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mo> </mo><mn>2</mn></mrow><mo>]</mo></mrow></mrow></semantics></math></inline-formula> were applied to the MTCS-model to understand the evolution of Y and Z components. For the Y orientation, the C orientation rotates toward T(5 5 2)[1 1 5] by twinning after 30% reduction and then toward Y(1 1 1)[1 1 2] by coplanar slip after over 30% reduction. For the Z orientation, the S’ orientation rotates toward T’<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>3</mn><mo> </mo><mn>2</mn><mo> </mo><mn>1</mn></mrow><mo>)</mo></mrow><mrow><mo>[</mo><mrow><mn>2</mn><mo> </mo><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="true">¯</mo></mover><mo> </mo><mover accent="true"><mn>4</mn><mo>¯</mo></mover></mrow><mo>]</mo></mrow></mrow></semantics></math></inline-formula> by twinning after 30% reduction and then toward Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo> </mo><mn>1</mn><mo> </mo><mn>1</mn></mrow><mo>)</mo></mrow><mrow><mo>[</mo><mrow><mn>1</mn><mo> </mo><mn>0</mn><mo> </mo><mover accent="true"><mn>1</mn><mo>¯</mo></mover></mrow><mo>]</mo></mrow></mrow></semantics></math></inline-formula> by coplanar slip after over 30% reduction.
first_indexed 2024-03-10T05:35:45Z
format Article
id doaj.art-b9c087159b5a4c8c931453f4f8309c15
institution Directory Open Access Journal
issn 2073-4352
language English
last_indexed 2024-03-10T05:35:45Z
publishDate 2021-11-01
publisher MDPI AG
record_format Article
series Crystals
spelling doaj.art-b9c087159b5a4c8c931453f4f8309c152023-11-22T22:58:20ZengMDPI AGCrystals2073-43522021-11-011111135110.3390/cryst11111351Rolling Texture of Cu–30%Zn Alloy Using Taylor Model Based on Twinning and Coplanar SlipShih-Chieh Hsiao0Sin-Ying Lin1Huang-Jun Chen2Ping-Yin Hsieh3Jui-Chao Kuo4Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, TaiwanDepartment of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, TaiwanDepartment of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, TaiwanDepartment of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, TaiwanDepartment of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, TaiwanA modified Taylor model, hereafter referred to as the MTCS (Mechanical-Twinning-with-Coplanar-Slip)-model, is proposed in the present work to predict weak texture components in the shear bands of brass-type fcc metals with a twin–matrix lamellar (TML) structure. The MTCS-model considers two boundary conditions (i.e., twinning does not occur in previously twinned areas and coplanar slip occurs in the TML region) to simulate the rolling texture of Cu–30%Zn. In the first approximation, texture simulation using the MTCS-model revealed brass-type textures, including Y{1 1 1} <1 1 2> and Z{1 1 1} <1 1 0> components, which correspond to the observed experimental textures. Single orientations of C<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo> </mo><mn>1</mn><mo> </mo><mn>2</mn></mrow><mo>)</mo></mrow><mrow><mo>[</mo><mrow><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="true">¯</mo></mover><mo> </mo><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="true">¯</mo></mover><mo> </mo><mn>1</mn></mrow><mo>]</mo></mrow></mrow></semantics></math></inline-formula> and S’<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo> </mo><mn>2</mn><mo> </mo><mn>3</mn></mrow><mo>)</mo></mrow><mrow><mo>[</mo><mrow><mover accent="true"><mn>4</mn><mo>¯</mo></mover><mo> </mo><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mo> </mo><mn>2</mn></mrow><mo>]</mo></mrow></mrow></semantics></math></inline-formula> were applied to the MTCS-model to understand the evolution of Y and Z components. For the Y orientation, the C orientation rotates toward T(5 5 2)[1 1 5] by twinning after 30% reduction and then toward Y(1 1 1)[1 1 2] by coplanar slip after over 30% reduction. For the Z orientation, the S’ orientation rotates toward T’<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>3</mn><mo> </mo><mn>2</mn><mo> </mo><mn>1</mn></mrow><mo>)</mo></mrow><mrow><mo>[</mo><mrow><mn>2</mn><mo> </mo><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="true">¯</mo></mover><mo> </mo><mover accent="true"><mn>4</mn><mo>¯</mo></mover></mrow><mo>]</mo></mrow></mrow></semantics></math></inline-formula> by twinning after 30% reduction and then toward Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo> </mo><mn>1</mn><mo> </mo><mn>1</mn></mrow><mo>)</mo></mrow><mrow><mo>[</mo><mrow><mn>1</mn><mo> </mo><mn>0</mn><mo> </mo><mover accent="true"><mn>1</mn><mo>¯</mo></mover></mrow><mo>]</mo></mrow></mrow></semantics></math></inline-formula> by coplanar slip after over 30% reduction.https://www.mdpi.com/2073-4352/11/11/1351brass-type shear bandtwin–matrix lamellaecoplanar slipTaylor modelCu–Zn alloycold-rolling texture
spellingShingle Shih-Chieh Hsiao
Sin-Ying Lin
Huang-Jun Chen
Ping-Yin Hsieh
Jui-Chao Kuo
Rolling Texture of Cu–30%Zn Alloy Using Taylor Model Based on Twinning and Coplanar Slip
Crystals
brass-type shear band
twin–matrix lamellae
coplanar slip
Taylor model
Cu–Zn alloy
cold-rolling texture
title Rolling Texture of Cu–30%Zn Alloy Using Taylor Model Based on Twinning and Coplanar Slip
title_full Rolling Texture of Cu–30%Zn Alloy Using Taylor Model Based on Twinning and Coplanar Slip
title_fullStr Rolling Texture of Cu–30%Zn Alloy Using Taylor Model Based on Twinning and Coplanar Slip
title_full_unstemmed Rolling Texture of Cu–30%Zn Alloy Using Taylor Model Based on Twinning and Coplanar Slip
title_short Rolling Texture of Cu–30%Zn Alloy Using Taylor Model Based on Twinning and Coplanar Slip
title_sort rolling texture of cu 30 zn alloy using taylor model based on twinning and coplanar slip
topic brass-type shear band
twin–matrix lamellae
coplanar slip
Taylor model
Cu–Zn alloy
cold-rolling texture
url https://www.mdpi.com/2073-4352/11/11/1351
work_keys_str_mv AT shihchiehhsiao rollingtextureofcu30znalloyusingtaylormodelbasedontwinningandcoplanarslip
AT sinyinglin rollingtextureofcu30znalloyusingtaylormodelbasedontwinningandcoplanarslip
AT huangjunchen rollingtextureofcu30znalloyusingtaylormodelbasedontwinningandcoplanarslip
AT pingyinhsieh rollingtextureofcu30znalloyusingtaylormodelbasedontwinningandcoplanarslip
AT juichaokuo rollingtextureofcu30znalloyusingtaylormodelbasedontwinningandcoplanarslip