MaskUKF: An Instance Segmentation Aided Unscented Kalman Filter for 6D Object Pose and Velocity Tracking

Tracking the 6D pose and velocity of objects represents a fundamental requirement for modern robotics manipulation tasks. This paper proposes a 6D object pose tracking algorithm, called MaskUKF, that combines deep object segmentation networks and depth information with a serial Unscented Kalman Filt...

Full description

Bibliographic Details
Main Authors: Nicola A. Piga, Fabrizio Bottarel, Claudio Fantacci, Giulia Vezzani, Ugo Pattacini, Lorenzo Natale
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-03-01
Series:Frontiers in Robotics and AI
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/frobt.2021.594583/full
_version_ 1818596840628551680
author Nicola A. Piga
Nicola A. Piga
Fabrizio Bottarel
Fabrizio Bottarel
Claudio Fantacci
Giulia Vezzani
Ugo Pattacini
Lorenzo Natale
author_facet Nicola A. Piga
Nicola A. Piga
Fabrizio Bottarel
Fabrizio Bottarel
Claudio Fantacci
Giulia Vezzani
Ugo Pattacini
Lorenzo Natale
author_sort Nicola A. Piga
collection DOAJ
description Tracking the 6D pose and velocity of objects represents a fundamental requirement for modern robotics manipulation tasks. This paper proposes a 6D object pose tracking algorithm, called MaskUKF, that combines deep object segmentation networks and depth information with a serial Unscented Kalman Filter to track the pose and the velocity of an object in real-time. MaskUKF achieves and in most cases surpasses state-of-the-art performance on the YCB-Video pose estimation benchmark without the need for expensive ground truth pose annotations at training time. Closed loop control experiments on the iCub humanoid platform in simulation show that joint pose and velocity tracking helps achieving higher precision and reliability than with one-shot deep pose estimation networks. A video of the experiments is available as Supplementary Material.
first_indexed 2024-12-16T11:38:18Z
format Article
id doaj.art-b9c3c1d57a4f434b8b795326a9fa5fda
institution Directory Open Access Journal
issn 2296-9144
language English
last_indexed 2024-12-16T11:38:18Z
publishDate 2021-03-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Robotics and AI
spelling doaj.art-b9c3c1d57a4f434b8b795326a9fa5fda2022-12-21T22:33:00ZengFrontiers Media S.A.Frontiers in Robotics and AI2296-91442021-03-01810.3389/frobt.2021.594583594583MaskUKF: An Instance Segmentation Aided Unscented Kalman Filter for 6D Object Pose and Velocity TrackingNicola A. Piga0Nicola A. Piga1Fabrizio Bottarel2Fabrizio Bottarel3Claudio Fantacci4Giulia Vezzani5Ugo Pattacini6Lorenzo Natale7Humanoid Sensing and Perception, Istituto Italiano di Tecnologia, Genova, ItalyDipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi, Università di Genova, Genova, ItalyHumanoid Sensing and Perception, Istituto Italiano di Tecnologia, Genova, ItalyDipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi, Università di Genova, Genova, ItalyHumanoid Sensing and Perception, Istituto Italiano di Tecnologia, Genova, ItalyHumanoid Sensing and Perception, Istituto Italiano di Tecnologia, Genova, ItalyiCub Tech, Istituto Italiano di Tecnologia, Genova, ItalyHumanoid Sensing and Perception, Istituto Italiano di Tecnologia, Genova, ItalyTracking the 6D pose and velocity of objects represents a fundamental requirement for modern robotics manipulation tasks. This paper proposes a 6D object pose tracking algorithm, called MaskUKF, that combines deep object segmentation networks and depth information with a serial Unscented Kalman Filter to track the pose and the velocity of an object in real-time. MaskUKF achieves and in most cases surpasses state-of-the-art performance on the YCB-Video pose estimation benchmark without the need for expensive ground truth pose annotations at training time. Closed loop control experiments on the iCub humanoid platform in simulation show that joint pose and velocity tracking helps achieving higher precision and reliability than with one-shot deep pose estimation networks. A video of the experiments is available as Supplementary Material.https://www.frontiersin.org/articles/10.3389/frobt.2021.594583/full6D object pose trackingobject velocity trackingunscented Kalman filteringdeep learning-aided filteringclosed loop manipulationhumanoid robotics
spellingShingle Nicola A. Piga
Nicola A. Piga
Fabrizio Bottarel
Fabrizio Bottarel
Claudio Fantacci
Giulia Vezzani
Ugo Pattacini
Lorenzo Natale
MaskUKF: An Instance Segmentation Aided Unscented Kalman Filter for 6D Object Pose and Velocity Tracking
Frontiers in Robotics and AI
6D object pose tracking
object velocity tracking
unscented Kalman filtering
deep learning-aided filtering
closed loop manipulation
humanoid robotics
title MaskUKF: An Instance Segmentation Aided Unscented Kalman Filter for 6D Object Pose and Velocity Tracking
title_full MaskUKF: An Instance Segmentation Aided Unscented Kalman Filter for 6D Object Pose and Velocity Tracking
title_fullStr MaskUKF: An Instance Segmentation Aided Unscented Kalman Filter for 6D Object Pose and Velocity Tracking
title_full_unstemmed MaskUKF: An Instance Segmentation Aided Unscented Kalman Filter for 6D Object Pose and Velocity Tracking
title_short MaskUKF: An Instance Segmentation Aided Unscented Kalman Filter for 6D Object Pose and Velocity Tracking
title_sort maskukf an instance segmentation aided unscented kalman filter for 6d object pose and velocity tracking
topic 6D object pose tracking
object velocity tracking
unscented Kalman filtering
deep learning-aided filtering
closed loop manipulation
humanoid robotics
url https://www.frontiersin.org/articles/10.3389/frobt.2021.594583/full
work_keys_str_mv AT nicolaapiga maskukfaninstancesegmentationaidedunscentedkalmanfilterfor6dobjectposeandvelocitytracking
AT nicolaapiga maskukfaninstancesegmentationaidedunscentedkalmanfilterfor6dobjectposeandvelocitytracking
AT fabriziobottarel maskukfaninstancesegmentationaidedunscentedkalmanfilterfor6dobjectposeandvelocitytracking
AT fabriziobottarel maskukfaninstancesegmentationaidedunscentedkalmanfilterfor6dobjectposeandvelocitytracking
AT claudiofantacci maskukfaninstancesegmentationaidedunscentedkalmanfilterfor6dobjectposeandvelocitytracking
AT giuliavezzani maskukfaninstancesegmentationaidedunscentedkalmanfilterfor6dobjectposeandvelocitytracking
AT ugopattacini maskukfaninstancesegmentationaidedunscentedkalmanfilterfor6dobjectposeandvelocitytracking
AT lorenzonatale maskukfaninstancesegmentationaidedunscentedkalmanfilterfor6dobjectposeandvelocitytracking