Water table response to rainfall and groundwater simulation using physics-based numerical model: WASH123D
Study region: Four districts (Meinong, Qishan, Dashu, and Daliao) of Kaohsiung city, Southern Taiwan Study focus: The understanding of aquifer recharge in terms of water table response to rainfall is of critical importance to groundwater systems management and various endeavors have been made to est...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2022-02-01
|
Series: | Journal of Hydrology: Regional Studies |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2214581822000015 |
_version_ | 1819282646545465344 |
---|---|
author | Fiaz Hussain Ray-Shyan Wu Dong-Sin Shih |
author_facet | Fiaz Hussain Ray-Shyan Wu Dong-Sin Shih |
author_sort | Fiaz Hussain |
collection | DOAJ |
description | Study region: Four districts (Meinong, Qishan, Dashu, and Daliao) of Kaohsiung city, Southern Taiwan Study focus: The understanding of aquifer recharge in terms of water table response to rainfall is of critical importance to groundwater systems management and various endeavors have been made to estimate the amount of recharge using rainfall data. The purpose of this study is to evaluate the groundwater level response to rainfall and determine the recharge potential for shallow aquifers. We showed a simple approach to estimate specific yield (Sy) and hydraulic conductivity (k) as functions of rainfall and water level data. New hydrological insights for the region: Correlation method is applied to investigate groundwater level response to associated rainfall and it was found that the rise in water table linearly depends on the rainfall amount per event. Results show the annual recharge rates of 244–1472 mm year─1, which represent 12–43% of rainfall in the study area. The estimated k (order of 10─4 to 10─5 m s─1) and Sy (0.20–0.51) were used as prior values to setup groundwater numerical modeling using WASH123D. The real-time case scenario simulation using pumping and rainfall data indicated the reasonable hydrological response of groundwater levels to rainfall. The long-term simulations should be performed with WASH123D to deal with the subjectivity of sustained groundwater pumping and sustainability of aquifers for better groundwater resource planning and management. |
first_indexed | 2024-12-24T01:18:54Z |
format | Article |
id | doaj.art-b9db1bbef9fd44b2bb19d88f32b7ecd9 |
institution | Directory Open Access Journal |
issn | 2214-5818 |
language | English |
last_indexed | 2024-12-24T01:18:54Z |
publishDate | 2022-02-01 |
publisher | Elsevier |
record_format | Article |
series | Journal of Hydrology: Regional Studies |
spelling | doaj.art-b9db1bbef9fd44b2bb19d88f32b7ecd92022-12-21T17:22:42ZengElsevierJournal of Hydrology: Regional Studies2214-58182022-02-0139100988Water table response to rainfall and groundwater simulation using physics-based numerical model: WASH123DFiaz Hussain0Ray-Shyan Wu1Dong-Sin Shih2Department of Civil Engineering, National Central University, Chung-Li 32001, Taiwan; Department of Agricultural Engineering, PMAS-Arid Agriculture University Rawalpindi, 46000, PakistanDepartment of Civil Engineering, National Central University, Chung-Li 32001, Taiwan; Corresponding author.Department of Civil Engineering, National Yang Ming Chiao Tung University, Hsinchu City 30010, TaiwanStudy region: Four districts (Meinong, Qishan, Dashu, and Daliao) of Kaohsiung city, Southern Taiwan Study focus: The understanding of aquifer recharge in terms of water table response to rainfall is of critical importance to groundwater systems management and various endeavors have been made to estimate the amount of recharge using rainfall data. The purpose of this study is to evaluate the groundwater level response to rainfall and determine the recharge potential for shallow aquifers. We showed a simple approach to estimate specific yield (Sy) and hydraulic conductivity (k) as functions of rainfall and water level data. New hydrological insights for the region: Correlation method is applied to investigate groundwater level response to associated rainfall and it was found that the rise in water table linearly depends on the rainfall amount per event. Results show the annual recharge rates of 244–1472 mm year─1, which represent 12–43% of rainfall in the study area. The estimated k (order of 10─4 to 10─5 m s─1) and Sy (0.20–0.51) were used as prior values to setup groundwater numerical modeling using WASH123D. The real-time case scenario simulation using pumping and rainfall data indicated the reasonable hydrological response of groundwater levels to rainfall. The long-term simulations should be performed with WASH123D to deal with the subjectivity of sustained groundwater pumping and sustainability of aquifers for better groundwater resource planning and management.http://www.sciencedirect.com/science/article/pii/S2214581822000015Water table fluctuationRecession analysisSpecific yieldHydraulic conductivityGroundwater modelingWASH123D |
spellingShingle | Fiaz Hussain Ray-Shyan Wu Dong-Sin Shih Water table response to rainfall and groundwater simulation using physics-based numerical model: WASH123D Journal of Hydrology: Regional Studies Water table fluctuation Recession analysis Specific yield Hydraulic conductivity Groundwater modeling WASH123D |
title | Water table response to rainfall and groundwater simulation using physics-based numerical model: WASH123D |
title_full | Water table response to rainfall and groundwater simulation using physics-based numerical model: WASH123D |
title_fullStr | Water table response to rainfall and groundwater simulation using physics-based numerical model: WASH123D |
title_full_unstemmed | Water table response to rainfall and groundwater simulation using physics-based numerical model: WASH123D |
title_short | Water table response to rainfall and groundwater simulation using physics-based numerical model: WASH123D |
title_sort | water table response to rainfall and groundwater simulation using physics based numerical model wash123d |
topic | Water table fluctuation Recession analysis Specific yield Hydraulic conductivity Groundwater modeling WASH123D |
url | http://www.sciencedirect.com/science/article/pii/S2214581822000015 |
work_keys_str_mv | AT fiazhussain watertableresponsetorainfallandgroundwatersimulationusingphysicsbasednumericalmodelwash123d AT rayshyanwu watertableresponsetorainfallandgroundwatersimulationusingphysicsbasednumericalmodelwash123d AT dongsinshih watertableresponsetorainfallandgroundwatersimulationusingphysicsbasednumericalmodelwash123d |