Evaluating Automatic Segmentation for Swallowing-Related Organs for Head and Neck Cancer

Purpose: To evaluate the accuracy of deep-learning-based auto-segmentation of the superior constrictor, middle constrictor, inferior constrictor, and larynx in comparison with a traditional multi-atlas-based method. Methods and Materials: One hundred and five computed tomography image datasets from...

Full description

Bibliographic Details
Main Authors: Yimin Li MD, Shyam Rao MD, Wen Chen MD, Soheila F. Azghadi MD, Ky Nam Bao Nguyen MD, Angel Moran MD, Brittni M Usera MD, Brandon A Dyer MD, Lu Shang PhD, Quan Chen PhD, Yi Rong PhD
Format: Article
Language:English
Published: SAGE Publishing 2022-07-01
Series:Technology in Cancer Research & Treatment
Online Access:https://doi.org/10.1177/15330338221105724
Description
Summary:Purpose: To evaluate the accuracy of deep-learning-based auto-segmentation of the superior constrictor, middle constrictor, inferior constrictor, and larynx in comparison with a traditional multi-atlas-based method. Methods and Materials: One hundred and five computed tomography image datasets from 83 head and neck cancer patients were retrospectively collected and the superior constrictor, middle constrictor, inferior constrictor, and larynx were analyzed for deep-learning versus multi-atlas-based segmentation. Eighty-three computed tomography images (40 diagnostic computed tomography and 43 planning computed tomography) were used for training the convolutional neural network, and for atlas-based model training. The remaining 22 computed tomography datasets were used for validation of the atlas-based auto-segmentation versus deep-learning-based auto-segmentation contours, both of which were compared with the corresponding manual contours. Quantitative measures included Dice similarity coefficient, recall, precision, Hausdorff distance, 95th percentile of Hausdorff distance, and mean surface distance. Dosimetric differences between the auto-generated contours and manual contours were evaluated. Subjective evaluation was obtained from 3 clinical observers to blindly score the autosegmented structures based on the percentage of slices that require manual modification. Results: The deep-learning-based auto-segmentation versus atlas-based auto-segmentation results were compared for the superior constrictor, middle constrictor, inferior constrictor, and larynx. The mean Dice similarity coefficient values for the 4 structures were 0.67, 0.60, 0.65, and 0.84 for deep-learning-based auto-segmentation, whereas atlas-based auto-segmentation has Dice similarity coefficient results at 0.45, 0.36, 0.50, and 0.70, respectively. The mean 95th percentile of Hausdorff distance (cm) for the 4 structures were 0.41, 0.57, 0.59, and 0.54 for deep-learning-based auto-segmentation, but 0.78, 0.95, 0.96, and 1.23 for atlas-based auto-segmentation results, respectively. Similar mean dose differences were obtained from the 2 sets of autosegmented contours compared to manual contours. The dose–volume discrepancies and the average modification rates were higher with the atlas-based auto-segmentation contours. Conclusion: Swallowing-related structures are more accurately generated with DL-based versus atlas-based segmentation when compared with manual contours.
ISSN:1533-0338