Recent advances in AIEgen‐based crystalline porous materials for chemical sensing

Abstract Aggregation‐induced emission‐based luminogens (AIEgens) have aroused enormous interest due to their unique high fluorescence in a condensed state. To further explore their potential applications, such as chemical monitoring, immobilization of AIE molecules has been widely studied with a var...

Full description

Bibliographic Details
Main Authors: Yaozu Liu, Xinyu Guan, Qianrong Fang
Format: Article
Language:English
Published: Wiley 2021-06-01
Series:Aggregate
Subjects:
Online Access:https://doi.org/10.1002/agt2.34
Description
Summary:Abstract Aggregation‐induced emission‐based luminogens (AIEgens) have aroused enormous interest due to their unique high fluorescence in a condensed state. To further explore their potential applications, such as chemical monitoring, immobilization of AIE molecules has been widely studied with a variety of supports. Crystalline porous materials, such as metal‐organic frameworks, covalent organic frameworks, hydrogen‐bonded organic framework, and organic cages, demonstrate well‐controlled structures, large surface areas, and promising stabilities, thus providing a perfect platform for AIE agents loading. Outstanding chemical sensing performances are achieved based on these AIE‐active crystalline porous materials, such as high sensitivity, short response time, selective identification, and high recyclability, which provide a new alternative to readily detect various hazardous molecules. Furthermore, precise structures of AIEgen‐based crystalline porous materials offer an easy way to investigate detection mechanisms. This mini‐review will provide a brief overview of AIEgen‐based crystalline porous materials for detection and then address how to improve sensing performances remarkably.
ISSN:2692-4560