Skip to content
VuFind
    • English
    • Deutsch
    • Español
    • Français
    • Italiano
    • 日本語
    • Nederlands
    • Português
    • Português (Brasil)
    • 中文(简体)
    • 中文(繁體)
    • Türkçe
    • עברית
    • Gaeilge
    • Cymraeg
    • Ελληνικά
    • Català
    • Euskara
    • Русский
    • Čeština
    • Suomi
    • Svenska
    • polski
    • Dansk
    • slovenščina
    • اللغة العربية
    • বাংলা
    • Galego
    • Tiếng Việt
    • Hrvatski
    • हिंदी
    • Հայերէն
    • Українська
    • Sámegiella
    • Монгол
Advanced
  • A genome-wide and candidate ge...
  • Cite this
  • Text this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
  • Permanent link
A genome-wide and candidate gene association study of preterm birth in Korean pregnant women

A genome-wide and candidate gene association study of preterm birth in Korean pregnant women

Bibliographic Details
Main Authors: Young Min Hur, Jae Young Yoo, Young Ah You, Sunwha Park, Soo Min Kim, Gain Lee, Young Ju Kim
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2023-01-01
Series:PLoS ONE
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686439/?tool=EBI
  • Holdings
  • Description
  • Similar Items
  • Staff View
Description
ISSN:1932-6203

Similar Items

  • Transition in vaginal Lactobacillus species during pregnancy and prediction of preterm birth in Korean women
    by: Young-Ah You, et al.
    Published: (2022-12-01)
  • Dysbiotic Vaginal Microbiota Induces Preterm Birth Cascade via Pathogenic Molecules in the Vagina
    by: AbuZar Ansari, et al.
    Published: (2024-01-01)
  • Identification of Indicators for Preterm Birth Using Retinoid Metabolites
    by: Young-Ah You, et al.
    Published: (2021-07-01)
  • Identification of Potential Biomarkers in the Cervicovaginal Fluid by Metabolic Profiling for Preterm Birth
    by: AbuZar Ansari, et al.
    Published: (2020-08-01)
  • Predicting preterm birth through vaginal microbiota, cervical length, and WBC using a machine learning model
    by: Sunwha Park, et al.
    Published: (2022-08-01)

Search Options

  • Search History
  • Advanced Search

Find More

  • Browse the Catalog
  • Browse Alphabetically
  • Explore Channels
  • Course Reserves
  • New Items

Need Help?

  • Search Tips
  • Ask a Librarian
  • FAQs