Random Vibration Fatigue Analysis Using a Nonlinear Cumulative Damage Model

The paper’s content allowed us to determine the fatigue life of a component that is being subjected to a random vibration environment. Its estimation is performed in the frequency domain with loading frequencies being closer to the system’s natural frequency. From loads’ amplitude and their interact...

Full description

Bibliographic Details
Main Authors: Jesús M. Barraza-Contreras, Manuel R. Piña-Monarrez, Alejandro Molina, Roberto C. Torres-Villaseñor
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/9/4310
_version_ 1797505707656871936
author Jesús M. Barraza-Contreras
Manuel R. Piña-Monarrez
Alejandro Molina
Roberto C. Torres-Villaseñor
author_facet Jesús M. Barraza-Contreras
Manuel R. Piña-Monarrez
Alejandro Molina
Roberto C. Torres-Villaseñor
author_sort Jesús M. Barraza-Contreras
collection DOAJ
description The paper’s content allowed us to determine the fatigue life of a component that is being subjected to a random vibration environment. Its estimation is performed in the frequency domain with loading frequencies being closer to the system’s natural frequency. From loads’ amplitude and their interaction effect, we derive a nonlinear damage model to cumulate the generated fatigue damage. The exponent value of 0.4 from the Manson–Halford curve damage model was replaced by a vibration bending stress relation that considers the effect and interaction of loads. The analysis is performed from a progressive accelerated vibration spectrum to predict the fatigue life estimation. From this accelerated scenario, the accelerated coefficients and cumulated damage are both determined. The proposed nonlinear model is based on the following facts: (1) vibration and bending stress <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>σ</mi><mrow><mi>v</mi><mi>b</mi></mrow></msub></mrow></semantics></math></inline-formula> values are obtained from the response acceleration of power spectral density (PSD) applied and (2) the model can be applied to any mechanical component analysis where the corresponding acceleration responses <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>A</mi><mrow><mi>r</mi><mi>e</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula> and the dynamic load factor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>σ</mi><mrow><mi>d</mi><mi>y</mi><mi>n</mi><mi>a</mi><mi>m</mi><mi>i</mi><mi>c</mi><mtext> </mtext></mrow></msub></mrow></semantics></math></inline-formula> values are known. The steps to determine the expected fatigue damage accumulation <i>D</i> by using the curve damage are given.
first_indexed 2024-03-10T04:22:13Z
format Article
id doaj.art-b9f586561f6c41419f693ff14a3b7e91
institution Directory Open Access Journal
issn 2076-3417
language English
last_indexed 2024-03-10T04:22:13Z
publishDate 2022-04-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj.art-b9f586561f6c41419f693ff14a3b7e912023-11-23T07:47:15ZengMDPI AGApplied Sciences2076-34172022-04-01129431010.3390/app12094310Random Vibration Fatigue Analysis Using a Nonlinear Cumulative Damage ModelJesús M. Barraza-Contreras0Manuel R. Piña-Monarrez1Alejandro Molina2Roberto C. Torres-Villaseñor3Industrial and Manufacturing Department, Engineering and Technological Institute, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Chihuahua, MexicoIndustrial and Manufacturing Department, Engineering and Technological Institute, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Chihuahua, MexicoIndustrial and Manufacturing Department, Engineering and Technological Institute, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Chihuahua, MexicoIndustrial and Manufacturing Department, Engineering and Technological Institute, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Chihuahua, MexicoThe paper’s content allowed us to determine the fatigue life of a component that is being subjected to a random vibration environment. Its estimation is performed in the frequency domain with loading frequencies being closer to the system’s natural frequency. From loads’ amplitude and their interaction effect, we derive a nonlinear damage model to cumulate the generated fatigue damage. The exponent value of 0.4 from the Manson–Halford curve damage model was replaced by a vibration bending stress relation that considers the effect and interaction of loads. The analysis is performed from a progressive accelerated vibration spectrum to predict the fatigue life estimation. From this accelerated scenario, the accelerated coefficients and cumulated damage are both determined. The proposed nonlinear model is based on the following facts: (1) vibration and bending stress <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>σ</mi><mrow><mi>v</mi><mi>b</mi></mrow></msub></mrow></semantics></math></inline-formula> values are obtained from the response acceleration of power spectral density (PSD) applied and (2) the model can be applied to any mechanical component analysis where the corresponding acceleration responses <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>A</mi><mrow><mi>r</mi><mi>e</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula> and the dynamic load factor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>σ</mi><mrow><mi>d</mi><mi>y</mi><mi>n</mi><mi>a</mi><mi>m</mi><mi>i</mi><mi>c</mi><mtext> </mtext></mrow></msub></mrow></semantics></math></inline-formula> values are known. The steps to determine the expected fatigue damage accumulation <i>D</i> by using the curve damage are given.https://www.mdpi.com/2076-3417/12/9/4310fatigue damagerandom vibrationresonant frequencyacceleration responsenon-linear accumulative model
spellingShingle Jesús M. Barraza-Contreras
Manuel R. Piña-Monarrez
Alejandro Molina
Roberto C. Torres-Villaseñor
Random Vibration Fatigue Analysis Using a Nonlinear Cumulative Damage Model
Applied Sciences
fatigue damage
random vibration
resonant frequency
acceleration response
non-linear accumulative model
title Random Vibration Fatigue Analysis Using a Nonlinear Cumulative Damage Model
title_full Random Vibration Fatigue Analysis Using a Nonlinear Cumulative Damage Model
title_fullStr Random Vibration Fatigue Analysis Using a Nonlinear Cumulative Damage Model
title_full_unstemmed Random Vibration Fatigue Analysis Using a Nonlinear Cumulative Damage Model
title_short Random Vibration Fatigue Analysis Using a Nonlinear Cumulative Damage Model
title_sort random vibration fatigue analysis using a nonlinear cumulative damage model
topic fatigue damage
random vibration
resonant frequency
acceleration response
non-linear accumulative model
url https://www.mdpi.com/2076-3417/12/9/4310
work_keys_str_mv AT jesusmbarrazacontreras randomvibrationfatigueanalysisusinganonlinearcumulativedamagemodel
AT manuelrpinamonarrez randomvibrationfatigueanalysisusinganonlinearcumulativedamagemodel
AT alejandromolina randomvibrationfatigueanalysisusinganonlinearcumulativedamagemodel
AT robertoctorresvillasenor randomvibrationfatigueanalysisusinganonlinearcumulativedamagemodel