Random Vibration Fatigue Analysis Using a Nonlinear Cumulative Damage Model
The paper’s content allowed us to determine the fatigue life of a component that is being subjected to a random vibration environment. Its estimation is performed in the frequency domain with loading frequencies being closer to the system’s natural frequency. From loads’ amplitude and their interact...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-04-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/12/9/4310 |
_version_ | 1797505707656871936 |
---|---|
author | Jesús M. Barraza-Contreras Manuel R. Piña-Monarrez Alejandro Molina Roberto C. Torres-Villaseñor |
author_facet | Jesús M. Barraza-Contreras Manuel R. Piña-Monarrez Alejandro Molina Roberto C. Torres-Villaseñor |
author_sort | Jesús M. Barraza-Contreras |
collection | DOAJ |
description | The paper’s content allowed us to determine the fatigue life of a component that is being subjected to a random vibration environment. Its estimation is performed in the frequency domain with loading frequencies being closer to the system’s natural frequency. From loads’ amplitude and their interaction effect, we derive a nonlinear damage model to cumulate the generated fatigue damage. The exponent value of 0.4 from the Manson–Halford curve damage model was replaced by a vibration bending stress relation that considers the effect and interaction of loads. The analysis is performed from a progressive accelerated vibration spectrum to predict the fatigue life estimation. From this accelerated scenario, the accelerated coefficients and cumulated damage are both determined. The proposed nonlinear model is based on the following facts: (1) vibration and bending stress <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>σ</mi><mrow><mi>v</mi><mi>b</mi></mrow></msub></mrow></semantics></math></inline-formula> values are obtained from the response acceleration of power spectral density (PSD) applied and (2) the model can be applied to any mechanical component analysis where the corresponding acceleration responses <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>A</mi><mrow><mi>r</mi><mi>e</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula> and the dynamic load factor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>σ</mi><mrow><mi>d</mi><mi>y</mi><mi>n</mi><mi>a</mi><mi>m</mi><mi>i</mi><mi>c</mi><mtext> </mtext></mrow></msub></mrow></semantics></math></inline-formula> values are known. The steps to determine the expected fatigue damage accumulation <i>D</i> by using the curve damage are given. |
first_indexed | 2024-03-10T04:22:13Z |
format | Article |
id | doaj.art-b9f586561f6c41419f693ff14a3b7e91 |
institution | Directory Open Access Journal |
issn | 2076-3417 |
language | English |
last_indexed | 2024-03-10T04:22:13Z |
publishDate | 2022-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Applied Sciences |
spelling | doaj.art-b9f586561f6c41419f693ff14a3b7e912023-11-23T07:47:15ZengMDPI AGApplied Sciences2076-34172022-04-01129431010.3390/app12094310Random Vibration Fatigue Analysis Using a Nonlinear Cumulative Damage ModelJesús M. Barraza-Contreras0Manuel R. Piña-Monarrez1Alejandro Molina2Roberto C. Torres-Villaseñor3Industrial and Manufacturing Department, Engineering and Technological Institute, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Chihuahua, MexicoIndustrial and Manufacturing Department, Engineering and Technological Institute, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Chihuahua, MexicoIndustrial and Manufacturing Department, Engineering and Technological Institute, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Chihuahua, MexicoIndustrial and Manufacturing Department, Engineering and Technological Institute, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Chihuahua, MexicoThe paper’s content allowed us to determine the fatigue life of a component that is being subjected to a random vibration environment. Its estimation is performed in the frequency domain with loading frequencies being closer to the system’s natural frequency. From loads’ amplitude and their interaction effect, we derive a nonlinear damage model to cumulate the generated fatigue damage. The exponent value of 0.4 from the Manson–Halford curve damage model was replaced by a vibration bending stress relation that considers the effect and interaction of loads. The analysis is performed from a progressive accelerated vibration spectrum to predict the fatigue life estimation. From this accelerated scenario, the accelerated coefficients and cumulated damage are both determined. The proposed nonlinear model is based on the following facts: (1) vibration and bending stress <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>σ</mi><mrow><mi>v</mi><mi>b</mi></mrow></msub></mrow></semantics></math></inline-formula> values are obtained from the response acceleration of power spectral density (PSD) applied and (2) the model can be applied to any mechanical component analysis where the corresponding acceleration responses <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>A</mi><mrow><mi>r</mi><mi>e</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula> and the dynamic load factor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>σ</mi><mrow><mi>d</mi><mi>y</mi><mi>n</mi><mi>a</mi><mi>m</mi><mi>i</mi><mi>c</mi><mtext> </mtext></mrow></msub></mrow></semantics></math></inline-formula> values are known. The steps to determine the expected fatigue damage accumulation <i>D</i> by using the curve damage are given.https://www.mdpi.com/2076-3417/12/9/4310fatigue damagerandom vibrationresonant frequencyacceleration responsenon-linear accumulative model |
spellingShingle | Jesús M. Barraza-Contreras Manuel R. Piña-Monarrez Alejandro Molina Roberto C. Torres-Villaseñor Random Vibration Fatigue Analysis Using a Nonlinear Cumulative Damage Model Applied Sciences fatigue damage random vibration resonant frequency acceleration response non-linear accumulative model |
title | Random Vibration Fatigue Analysis Using a Nonlinear Cumulative Damage Model |
title_full | Random Vibration Fatigue Analysis Using a Nonlinear Cumulative Damage Model |
title_fullStr | Random Vibration Fatigue Analysis Using a Nonlinear Cumulative Damage Model |
title_full_unstemmed | Random Vibration Fatigue Analysis Using a Nonlinear Cumulative Damage Model |
title_short | Random Vibration Fatigue Analysis Using a Nonlinear Cumulative Damage Model |
title_sort | random vibration fatigue analysis using a nonlinear cumulative damage model |
topic | fatigue damage random vibration resonant frequency acceleration response non-linear accumulative model |
url | https://www.mdpi.com/2076-3417/12/9/4310 |
work_keys_str_mv | AT jesusmbarrazacontreras randomvibrationfatigueanalysisusinganonlinearcumulativedamagemodel AT manuelrpinamonarrez randomvibrationfatigueanalysisusinganonlinearcumulativedamagemodel AT alejandromolina randomvibrationfatigueanalysisusinganonlinearcumulativedamagemodel AT robertoctorresvillasenor randomvibrationfatigueanalysisusinganonlinearcumulativedamagemodel |