A Carbon Foam with Sodiophilic Surface for Highly Reversible, Ultra‐Long Cycle Sodium Metal Anode

Abstract Sodium metal anodes combine low redox potential (−2.71 V versus SHE) and high theoretical capacity (1165 mAh g−1), becoming a promising anode material for sodium‐ion batteries. Due to the infinite volume change, unstable SEI films, and Na dendrite growth, it is arduous to achieve a long lif...

Full description

Bibliographic Details
Main Authors: Xue‐Yang Cui, Ya‐Jing Wang, Hua‐Deng Wu, Xiao‐Dong Lin, Shuai Tang, Pan Xu, Hong‐Gang Liao, Ming‐Sen Zheng, Quan‐Feng Dong
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Advanced Science
Subjects:
Online Access:https://doi.org/10.1002/advs.202003178
_version_ 1797946799562948608
author Xue‐Yang Cui
Ya‐Jing Wang
Hua‐Deng Wu
Xiao‐Dong Lin
Shuai Tang
Pan Xu
Hong‐Gang Liao
Ming‐Sen Zheng
Quan‐Feng Dong
author_facet Xue‐Yang Cui
Ya‐Jing Wang
Hua‐Deng Wu
Xiao‐Dong Lin
Shuai Tang
Pan Xu
Hong‐Gang Liao
Ming‐Sen Zheng
Quan‐Feng Dong
author_sort Xue‐Yang Cui
collection DOAJ
description Abstract Sodium metal anodes combine low redox potential (−2.71 V versus SHE) and high theoretical capacity (1165 mAh g−1), becoming a promising anode material for sodium‐ion batteries. Due to the infinite volume change, unstable SEI films, and Na dendrite growth, it is arduous to achieve a long lifespan. Herein, an oxygen‐doped carbon foam (OCF) derived from starch is reported. Heteroatom doping can significantly reduce the nucleation resistance of sodium metal; combined with its rich pore structure and large specific surface area, OCF provides abundant nucleation sites to effectively guide the nucleation and subsequent growth of sodium metal, and the nature of this foam can accommodate the deposited sodium. Furthermore, a more uniform, robust, and stable SEI layer is observed on the surface of OCF electrode, so it can maintain ultra‐high reversibility and excellent integrity for a long time without dendritic growth. As a result, when the current density is 10 mA cm−2, the electrode can maintain stable 2000 cycles and the coulombic efficiency can reach to 99.83%. Na@OCF||Na3V2(PO4)3 full cell also has extremely high capacity retention of about 97.53% over 150 cycles. These results provide a simple but effective method for achieving the safety and commercialization of sodium metal anode.
first_indexed 2024-04-10T21:16:40Z
format Article
id doaj.art-b9fe47bccf8f4d948e91ee9922eb998c
institution Directory Open Access Journal
issn 2198-3844
language English
last_indexed 2024-04-10T21:16:40Z
publishDate 2021-01-01
publisher Wiley
record_format Article
series Advanced Science
spelling doaj.art-b9fe47bccf8f4d948e91ee9922eb998c2023-01-20T12:20:39ZengWileyAdvanced Science2198-38442021-01-0182n/an/a10.1002/advs.202003178A Carbon Foam with Sodiophilic Surface for Highly Reversible, Ultra‐Long Cycle Sodium Metal AnodeXue‐Yang Cui0Ya‐Jing Wang1Hua‐Deng Wu2Xiao‐Dong Lin3Shuai Tang4Pan Xu5Hong‐Gang Liao6Ming‐Sen Zheng7Quan‐Feng Dong8Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 ChinaCollaborative Innovation Center of Chemistry for Energy Materials (iChEM) State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 ChinaCollaborative Innovation Center of Chemistry for Energy Materials (iChEM) State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 ChinaCollaborative Innovation Center of Chemistry for Energy Materials (iChEM) State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 ChinaCollege of Chemistry Zhengzhou University Zhengzhou 450001 ChinaCollaborative Innovation Center of Chemistry for Energy Materials (iChEM) State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 ChinaCollaborative Innovation Center of Chemistry for Energy Materials (iChEM) State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 ChinaCollaborative Innovation Center of Chemistry for Energy Materials (iChEM) State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 ChinaCollaborative Innovation Center of Chemistry for Energy Materials (iChEM) State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 ChinaAbstract Sodium metal anodes combine low redox potential (−2.71 V versus SHE) and high theoretical capacity (1165 mAh g−1), becoming a promising anode material for sodium‐ion batteries. Due to the infinite volume change, unstable SEI films, and Na dendrite growth, it is arduous to achieve a long lifespan. Herein, an oxygen‐doped carbon foam (OCF) derived from starch is reported. Heteroatom doping can significantly reduce the nucleation resistance of sodium metal; combined with its rich pore structure and large specific surface area, OCF provides abundant nucleation sites to effectively guide the nucleation and subsequent growth of sodium metal, and the nature of this foam can accommodate the deposited sodium. Furthermore, a more uniform, robust, and stable SEI layer is observed on the surface of OCF electrode, so it can maintain ultra‐high reversibility and excellent integrity for a long time without dendritic growth. As a result, when the current density is 10 mA cm−2, the electrode can maintain stable 2000 cycles and the coulombic efficiency can reach to 99.83%. Na@OCF||Na3V2(PO4)3 full cell also has extremely high capacity retention of about 97.53% over 150 cycles. These results provide a simple but effective method for achieving the safety and commercialization of sodium metal anode.https://doi.org/10.1002/advs.202003178carbon materialscoulombic efficiencylong cycle lifeno dendrite formationsodium metal anodes
spellingShingle Xue‐Yang Cui
Ya‐Jing Wang
Hua‐Deng Wu
Xiao‐Dong Lin
Shuai Tang
Pan Xu
Hong‐Gang Liao
Ming‐Sen Zheng
Quan‐Feng Dong
A Carbon Foam with Sodiophilic Surface for Highly Reversible, Ultra‐Long Cycle Sodium Metal Anode
Advanced Science
carbon materials
coulombic efficiency
long cycle life
no dendrite formation
sodium metal anodes
title A Carbon Foam with Sodiophilic Surface for Highly Reversible, Ultra‐Long Cycle Sodium Metal Anode
title_full A Carbon Foam with Sodiophilic Surface for Highly Reversible, Ultra‐Long Cycle Sodium Metal Anode
title_fullStr A Carbon Foam with Sodiophilic Surface for Highly Reversible, Ultra‐Long Cycle Sodium Metal Anode
title_full_unstemmed A Carbon Foam with Sodiophilic Surface for Highly Reversible, Ultra‐Long Cycle Sodium Metal Anode
title_short A Carbon Foam with Sodiophilic Surface for Highly Reversible, Ultra‐Long Cycle Sodium Metal Anode
title_sort carbon foam with sodiophilic surface for highly reversible ultra long cycle sodium metal anode
topic carbon materials
coulombic efficiency
long cycle life
no dendrite formation
sodium metal anodes
url https://doi.org/10.1002/advs.202003178
work_keys_str_mv AT xueyangcui acarbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT yajingwang acarbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT huadengwu acarbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT xiaodonglin acarbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT shuaitang acarbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT panxu acarbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT honggangliao acarbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT mingsenzheng acarbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT quanfengdong acarbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT xueyangcui carbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT yajingwang carbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT huadengwu carbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT xiaodonglin carbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT shuaitang carbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT panxu carbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT honggangliao carbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT mingsenzheng carbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode
AT quanfengdong carbonfoamwithsodiophilicsurfaceforhighlyreversibleultralongcyclesodiummetalanode