Conceptual tendencies to analyze coal-gas system state under the hydroimpulsive effect
The paper considers conceptual tendencies concerning the analysis of coal-gas system state within rock mass in front of a mine working stope in the context of hydroimpulsive effect on an outburst-prone coal seam. It has been shown that mining intensification is impossible without the improved effici...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2019-01-01
|
Series: | E3S Web of Conferences |
Online Access: | https://www.e3s-conferences.org/articles/e3sconf/pdf/2019/49/e3sconf_usme2019_01026.pdf |
_version_ | 1818445941135376384 |
---|---|
author | Sofiiskyi Kostiantyn Zberovskyi Vasyl Yalanskyi Anatolii Yalanskyi Oleksii |
author_facet | Sofiiskyi Kostiantyn Zberovskyi Vasyl Yalanskyi Anatolii Yalanskyi Oleksii |
author_sort | Sofiiskyi Kostiantyn |
collection | DOAJ |
description | The paper considers conceptual tendencies concerning the analysis of coal-gas system state within rock mass in front of a mine working stope in the context of hydroimpulsive effect on an outburst-prone coal seam. It has been shown that mining intensification is impossible without the improved efficiency of means indented to avoid gasdynamic phenomena taking into consideration the effect of technogenic factors on operation schedules. It has been determined that since grades of outburst-prone coal are of globular structure, its breakage may involve changes in molecular weight of coal substance and generation of methane and water molecules. In the context of a shear model of undermined rock mass, method of graphical analysis has been applied to determine areas of changes in border angles of demonstration of the initial and maximum deformation under the effect of rock bearing pressure. The determined dependences are described rather reliably by means of similar logarithmic curves which characterizes identity of their nature. Changes in filtration coal characteristics in the context of shear deformations have been considered. It has been proved experimentally that if injection pressure varies, periodically discontinuous fluid flow has initial, stable, and decaying stages being implemented in the forms of cavitation phenomena and high-frequency hydroimpulsive vibration. Sequence of methods to study parameters of hydroimpulsive action, evaluation of its efficiency, and control over a change in coal-gas system state of outburst-prone coal seams have been considered. |
first_indexed | 2024-12-14T19:39:49Z |
format | Article |
id | doaj.art-ba030821390a4d4db8cf6504a761b893 |
institution | Directory Open Access Journal |
issn | 2267-1242 |
language | English |
last_indexed | 2024-12-14T19:39:49Z |
publishDate | 2019-01-01 |
publisher | EDP Sciences |
record_format | Article |
series | E3S Web of Conferences |
spelling | doaj.art-ba030821390a4d4db8cf6504a761b8932022-12-21T22:49:44ZengEDP SciencesE3S Web of Conferences2267-12422019-01-011230102610.1051/e3sconf/201912301026e3sconf_usme2019_01026Conceptual tendencies to analyze coal-gas system state under the hydroimpulsive effectSofiiskyi Kostiantyn0Zberovskyi Vasyl1Yalanskyi Anatolii2Yalanskyi Oleksii3Institute of Geotechnical Mechanics named after M.S. Polyakov of the National Academy of Sciences of UkraineInstitute of Geotechnical Mechanics named after M.S. Polyakov of the National Academy of Sciences of UkraineInstitute of Geotechnical Mechanics named after M.S. Polyakov of the National Academy of Sciences of UkraineDnipro University of Technology, Department of Underground MiningThe paper considers conceptual tendencies concerning the analysis of coal-gas system state within rock mass in front of a mine working stope in the context of hydroimpulsive effect on an outburst-prone coal seam. It has been shown that mining intensification is impossible without the improved efficiency of means indented to avoid gasdynamic phenomena taking into consideration the effect of technogenic factors on operation schedules. It has been determined that since grades of outburst-prone coal are of globular structure, its breakage may involve changes in molecular weight of coal substance and generation of methane and water molecules. In the context of a shear model of undermined rock mass, method of graphical analysis has been applied to determine areas of changes in border angles of demonstration of the initial and maximum deformation under the effect of rock bearing pressure. The determined dependences are described rather reliably by means of similar logarithmic curves which characterizes identity of their nature. Changes in filtration coal characteristics in the context of shear deformations have been considered. It has been proved experimentally that if injection pressure varies, periodically discontinuous fluid flow has initial, stable, and decaying stages being implemented in the forms of cavitation phenomena and high-frequency hydroimpulsive vibration. Sequence of methods to study parameters of hydroimpulsive action, evaluation of its efficiency, and control over a change in coal-gas system state of outburst-prone coal seams have been considered.https://www.e3s-conferences.org/articles/e3sconf/pdf/2019/49/e3sconf_usme2019_01026.pdf |
spellingShingle | Sofiiskyi Kostiantyn Zberovskyi Vasyl Yalanskyi Anatolii Yalanskyi Oleksii Conceptual tendencies to analyze coal-gas system state under the hydroimpulsive effect E3S Web of Conferences |
title | Conceptual tendencies to analyze coal-gas system state under the hydroimpulsive effect |
title_full | Conceptual tendencies to analyze coal-gas system state under the hydroimpulsive effect |
title_fullStr | Conceptual tendencies to analyze coal-gas system state under the hydroimpulsive effect |
title_full_unstemmed | Conceptual tendencies to analyze coal-gas system state under the hydroimpulsive effect |
title_short | Conceptual tendencies to analyze coal-gas system state under the hydroimpulsive effect |
title_sort | conceptual tendencies to analyze coal gas system state under the hydroimpulsive effect |
url | https://www.e3s-conferences.org/articles/e3sconf/pdf/2019/49/e3sconf_usme2019_01026.pdf |
work_keys_str_mv | AT sofiiskyikostiantyn conceptualtendenciestoanalyzecoalgassystemstateunderthehydroimpulsiveeffect AT zberovskyivasyl conceptualtendenciestoanalyzecoalgassystemstateunderthehydroimpulsiveeffect AT yalanskyianatolii conceptualtendenciestoanalyzecoalgassystemstateunderthehydroimpulsiveeffect AT yalanskyioleksii conceptualtendenciestoanalyzecoalgassystemstateunderthehydroimpulsiveeffect |