LiMn<sub>2</sub>O<sub>4–<it>y</it> </sub>Br<sub> <it>y</it> </sub>Nanoparticles Synthesized by a Room Temperature Solid-State Coordination Method
<p>Abstract</p> <p>LiMn<sub>2</sub>O<sub>4–<it>y</it> </sub>Br<sub> <it>y</it> </sub>nanoparticles were synthesized successfully for the first time by a room temperature solid-state coordination method. X-ray dif...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2009-01-01
|
Series: | Nanoscale Research Letters |
Subjects: | |
Online Access: | http://dx.doi.org/10.1007/s11671-009-9252-7 |
_version_ | 1797707412722941952 |
---|---|
author | Huang Yudai Jiang Rongrong Bao Shu-Juan Cao Yali Jia Dianzeng |
author_facet | Huang Yudai Jiang Rongrong Bao Shu-Juan Cao Yali Jia Dianzeng |
author_sort | Huang Yudai |
collection | DOAJ |
description | <p>Abstract</p> <p>LiMn<sub>2</sub>O<sub>4–<it>y</it> </sub>Br<sub> <it>y</it> </sub>nanoparticles were synthesized successfully for the first time by a room temperature solid-state coordination method. X-ray diffractometry patterns indicated that the LiMn<sub>2</sub>O<sub>4–<it>y</it> </sub>Br<sub> <it>y</it> </sub>powders were well-crystallized pure spinel phase. Transmission electron microscopy images showed that the LiMn<sub>2</sub>O<sub>4–<it>y</it> </sub>Br<sub> <it>y</it> </sub>powders consisted of small and uniform nanosized particles. Synthesis conditions such as the calcination temperature and the content of Br<sup>−</sup>were investigated to optimize the ideal condition for preparing LiMn<sub>2</sub>O<sub>4–<it>y</it> </sub>Br<sub> <it>y</it> </sub>with the best electrochemical performances. The optimized synthesis condition was found in this work; the calcination temperature is 800 °C and the content of Br<sup>−</sup>is 0.05. The initial discharge capacity of LiMn<sub>2</sub>O<sub>3.95</sub>Br<sub>0.05</sub>obtained from the optimized synthesis condition was 134 mAh/g, which is far higher than that of pure LiMn<sub>2</sub>O<sub>4</sub>, indicating introduction of Br<sup>−</sup>in LiMn<sub>2</sub>O<sub>4</sub>is quite effective in improving the initial discharge capacity.</p> |
first_indexed | 2024-03-12T06:06:03Z |
format | Article |
id | doaj.art-ba1baf97d24d4622b80c36cd0aaf45a1 |
institution | Directory Open Access Journal |
issn | 1931-7573 1556-276X |
language | English |
last_indexed | 2024-03-12T06:06:03Z |
publishDate | 2009-01-01 |
publisher | SpringerOpen |
record_format | Article |
series | Nanoscale Research Letters |
spelling | doaj.art-ba1baf97d24d4622b80c36cd0aaf45a12023-09-03T03:36:41ZengSpringerOpenNanoscale Research Letters1931-75731556-276X2009-01-0144353358LiMn<sub>2</sub>O<sub>4–<it>y</it> </sub>Br<sub> <it>y</it> </sub>Nanoparticles Synthesized by a Room Temperature Solid-State Coordination MethodHuang YudaiJiang RongrongBao Shu-JuanCao YaliJia Dianzeng<p>Abstract</p> <p>LiMn<sub>2</sub>O<sub>4–<it>y</it> </sub>Br<sub> <it>y</it> </sub>nanoparticles were synthesized successfully for the first time by a room temperature solid-state coordination method. X-ray diffractometry patterns indicated that the LiMn<sub>2</sub>O<sub>4–<it>y</it> </sub>Br<sub> <it>y</it> </sub>powders were well-crystallized pure spinel phase. Transmission electron microscopy images showed that the LiMn<sub>2</sub>O<sub>4–<it>y</it> </sub>Br<sub> <it>y</it> </sub>powders consisted of small and uniform nanosized particles. Synthesis conditions such as the calcination temperature and the content of Br<sup>−</sup>were investigated to optimize the ideal condition for preparing LiMn<sub>2</sub>O<sub>4–<it>y</it> </sub>Br<sub> <it>y</it> </sub>with the best electrochemical performances. The optimized synthesis condition was found in this work; the calcination temperature is 800 °C and the content of Br<sup>−</sup>is 0.05. The initial discharge capacity of LiMn<sub>2</sub>O<sub>3.95</sub>Br<sub>0.05</sub>obtained from the optimized synthesis condition was 134 mAh/g, which is far higher than that of pure LiMn<sub>2</sub>O<sub>4</sub>, indicating introduction of Br<sup>−</sup>in LiMn<sub>2</sub>O<sub>4</sub>is quite effective in improving the initial discharge capacity.</p>http://dx.doi.org/10.1007/s11671-009-9252-7LiMn<sub>2</sub>O<sub>4–<it>y</it> </sub>Br<sub> <it>y</it> </sub>NanoparticlesRoom temperature solid-state coordination methodLithium–ion battery |
spellingShingle | Huang Yudai Jiang Rongrong Bao Shu-Juan Cao Yali Jia Dianzeng LiMn<sub>2</sub>O<sub>4–<it>y</it> </sub>Br<sub> <it>y</it> </sub>Nanoparticles Synthesized by a Room Temperature Solid-State Coordination Method Nanoscale Research Letters LiMn<sub>2</sub>O<sub>4–<it>y</it> </sub>Br<sub> <it>y</it> </sub> Nanoparticles Room temperature solid-state coordination method Lithium–ion battery |
title | LiMn<sub>2</sub>O<sub>4–<it>y</it> </sub>Br<sub> <it>y</it> </sub>Nanoparticles Synthesized by a Room Temperature Solid-State Coordination Method |
title_full | LiMn<sub>2</sub>O<sub>4–<it>y</it> </sub>Br<sub> <it>y</it> </sub>Nanoparticles Synthesized by a Room Temperature Solid-State Coordination Method |
title_fullStr | LiMn<sub>2</sub>O<sub>4–<it>y</it> </sub>Br<sub> <it>y</it> </sub>Nanoparticles Synthesized by a Room Temperature Solid-State Coordination Method |
title_full_unstemmed | LiMn<sub>2</sub>O<sub>4–<it>y</it> </sub>Br<sub> <it>y</it> </sub>Nanoparticles Synthesized by a Room Temperature Solid-State Coordination Method |
title_short | LiMn<sub>2</sub>O<sub>4–<it>y</it> </sub>Br<sub> <it>y</it> </sub>Nanoparticles Synthesized by a Room Temperature Solid-State Coordination Method |
title_sort | limn sub 2 sub o sub 4 8211 it y it sub br sub it y it sub nanoparticles synthesized by a room temperature solid state coordination method |
topic | LiMn<sub>2</sub>O<sub>4–<it>y</it> </sub>Br<sub> <it>y</it> </sub> Nanoparticles Room temperature solid-state coordination method Lithium–ion battery |
url | http://dx.doi.org/10.1007/s11671-009-9252-7 |
work_keys_str_mv | AT huangyudai limnsub2subosub48211ityitsubbrsubityitsubnanoparticlessynthesizedbyaroomtemperaturesolidstatecoordinationmethod AT jiangrongrong limnsub2subosub48211ityitsubbrsubityitsubnanoparticlessynthesizedbyaroomtemperaturesolidstatecoordinationmethod AT baoshujuan limnsub2subosub48211ityitsubbrsubityitsubnanoparticlessynthesizedbyaroomtemperaturesolidstatecoordinationmethod AT caoyali limnsub2subosub48211ityitsubbrsubityitsubnanoparticlessynthesizedbyaroomtemperaturesolidstatecoordinationmethod AT jiadianzeng limnsub2subosub48211ityitsubbrsubityitsubnanoparticlessynthesizedbyaroomtemperaturesolidstatecoordinationmethod |