LiMn<sub>2</sub>O<sub>4&#8211;<it>y</it> </sub>Br<sub> <it>y</it> </sub>Nanoparticles Synthesized by a Room Temperature Solid-State Coordination Method

<p>Abstract</p> <p>LiMn<sub>2</sub>O<sub>4&#8211;<it>y</it> </sub>Br<sub> <it>y</it> </sub>nanoparticles were synthesized successfully for the first time by a room temperature solid-state coordination method. X-ray dif...

Full description

Bibliographic Details
Main Authors: Huang Yudai, Jiang Rongrong, Bao Shu-Juan, Cao Yali, Jia Dianzeng
Format: Article
Language:English
Published: SpringerOpen 2009-01-01
Series:Nanoscale Research Letters
Subjects:
Online Access:http://dx.doi.org/10.1007/s11671-009-9252-7
_version_ 1797707412722941952
author Huang Yudai
Jiang Rongrong
Bao Shu-Juan
Cao Yali
Jia Dianzeng
author_facet Huang Yudai
Jiang Rongrong
Bao Shu-Juan
Cao Yali
Jia Dianzeng
author_sort Huang Yudai
collection DOAJ
description <p>Abstract</p> <p>LiMn<sub>2</sub>O<sub>4&#8211;<it>y</it> </sub>Br<sub> <it>y</it> </sub>nanoparticles were synthesized successfully for the first time by a room temperature solid-state coordination method. X-ray diffractometry patterns indicated that the LiMn<sub>2</sub>O<sub>4&#8211;<it>y</it> </sub>Br<sub> <it>y</it> </sub>powders were well-crystallized pure spinel phase. Transmission electron microscopy images showed that the LiMn<sub>2</sub>O<sub>4&#8211;<it>y</it> </sub>Br<sub> <it>y</it> </sub>powders consisted of small and uniform nanosized particles. Synthesis conditions such as the calcination temperature and the content of Br<sup>&#8722;</sup>were investigated to optimize the ideal condition for preparing LiMn<sub>2</sub>O<sub>4&#8211;<it>y</it> </sub>Br<sub> <it>y</it> </sub>with the best electrochemical performances. The optimized synthesis condition was found in this work; the calcination temperature is 800 &#176;C and the content of Br<sup>&#8722;</sup>is 0.05. The initial discharge capacity of LiMn<sub>2</sub>O<sub>3.95</sub>Br<sub>0.05</sub>obtained from the optimized synthesis condition was 134 mAh/g, which is far higher than that of pure LiMn<sub>2</sub>O<sub>4</sub>, indicating introduction of Br<sup>&#8722;</sup>in LiMn<sub>2</sub>O<sub>4</sub>is quite effective in improving the initial discharge capacity.</p>
first_indexed 2024-03-12T06:06:03Z
format Article
id doaj.art-ba1baf97d24d4622b80c36cd0aaf45a1
institution Directory Open Access Journal
issn 1931-7573
1556-276X
language English
last_indexed 2024-03-12T06:06:03Z
publishDate 2009-01-01
publisher SpringerOpen
record_format Article
series Nanoscale Research Letters
spelling doaj.art-ba1baf97d24d4622b80c36cd0aaf45a12023-09-03T03:36:41ZengSpringerOpenNanoscale Research Letters1931-75731556-276X2009-01-0144353358LiMn<sub>2</sub>O<sub>4&#8211;<it>y</it> </sub>Br<sub> <it>y</it> </sub>Nanoparticles Synthesized by a Room Temperature Solid-State Coordination MethodHuang YudaiJiang RongrongBao Shu-JuanCao YaliJia Dianzeng<p>Abstract</p> <p>LiMn<sub>2</sub>O<sub>4&#8211;<it>y</it> </sub>Br<sub> <it>y</it> </sub>nanoparticles were synthesized successfully for the first time by a room temperature solid-state coordination method. X-ray diffractometry patterns indicated that the LiMn<sub>2</sub>O<sub>4&#8211;<it>y</it> </sub>Br<sub> <it>y</it> </sub>powders were well-crystallized pure spinel phase. Transmission electron microscopy images showed that the LiMn<sub>2</sub>O<sub>4&#8211;<it>y</it> </sub>Br<sub> <it>y</it> </sub>powders consisted of small and uniform nanosized particles. Synthesis conditions such as the calcination temperature and the content of Br<sup>&#8722;</sup>were investigated to optimize the ideal condition for preparing LiMn<sub>2</sub>O<sub>4&#8211;<it>y</it> </sub>Br<sub> <it>y</it> </sub>with the best electrochemical performances. The optimized synthesis condition was found in this work; the calcination temperature is 800 &#176;C and the content of Br<sup>&#8722;</sup>is 0.05. The initial discharge capacity of LiMn<sub>2</sub>O<sub>3.95</sub>Br<sub>0.05</sub>obtained from the optimized synthesis condition was 134 mAh/g, which is far higher than that of pure LiMn<sub>2</sub>O<sub>4</sub>, indicating introduction of Br<sup>&#8722;</sup>in LiMn<sub>2</sub>O<sub>4</sub>is quite effective in improving the initial discharge capacity.</p>http://dx.doi.org/10.1007/s11671-009-9252-7LiMn<sub>2</sub>O<sub>4&#8211;<it>y</it> </sub>Br<sub> <it>y</it> </sub>NanoparticlesRoom temperature solid-state coordination methodLithium&#8211;ion battery
spellingShingle Huang Yudai
Jiang Rongrong
Bao Shu-Juan
Cao Yali
Jia Dianzeng
LiMn<sub>2</sub>O<sub>4&#8211;<it>y</it> </sub>Br<sub> <it>y</it> </sub>Nanoparticles Synthesized by a Room Temperature Solid-State Coordination Method
Nanoscale Research Letters
LiMn<sub>2</sub>O<sub>4&#8211;<it>y</it> </sub>Br<sub> <it>y</it> </sub>
Nanoparticles
Room temperature solid-state coordination method
Lithium&#8211;ion battery
title LiMn<sub>2</sub>O<sub>4&#8211;<it>y</it> </sub>Br<sub> <it>y</it> </sub>Nanoparticles Synthesized by a Room Temperature Solid-State Coordination Method
title_full LiMn<sub>2</sub>O<sub>4&#8211;<it>y</it> </sub>Br<sub> <it>y</it> </sub>Nanoparticles Synthesized by a Room Temperature Solid-State Coordination Method
title_fullStr LiMn<sub>2</sub>O<sub>4&#8211;<it>y</it> </sub>Br<sub> <it>y</it> </sub>Nanoparticles Synthesized by a Room Temperature Solid-State Coordination Method
title_full_unstemmed LiMn<sub>2</sub>O<sub>4&#8211;<it>y</it> </sub>Br<sub> <it>y</it> </sub>Nanoparticles Synthesized by a Room Temperature Solid-State Coordination Method
title_short LiMn<sub>2</sub>O<sub>4&#8211;<it>y</it> </sub>Br<sub> <it>y</it> </sub>Nanoparticles Synthesized by a Room Temperature Solid-State Coordination Method
title_sort limn sub 2 sub o sub 4 8211 it y it sub br sub it y it sub nanoparticles synthesized by a room temperature solid state coordination method
topic LiMn<sub>2</sub>O<sub>4&#8211;<it>y</it> </sub>Br<sub> <it>y</it> </sub>
Nanoparticles
Room temperature solid-state coordination method
Lithium&#8211;ion battery
url http://dx.doi.org/10.1007/s11671-009-9252-7
work_keys_str_mv AT huangyudai limnsub2subosub48211ityitsubbrsubityitsubnanoparticlessynthesizedbyaroomtemperaturesolidstatecoordinationmethod
AT jiangrongrong limnsub2subosub48211ityitsubbrsubityitsubnanoparticlessynthesizedbyaroomtemperaturesolidstatecoordinationmethod
AT baoshujuan limnsub2subosub48211ityitsubbrsubityitsubnanoparticlessynthesizedbyaroomtemperaturesolidstatecoordinationmethod
AT caoyali limnsub2subosub48211ityitsubbrsubityitsubnanoparticlessynthesizedbyaroomtemperaturesolidstatecoordinationmethod
AT jiadianzeng limnsub2subosub48211ityitsubbrsubityitsubnanoparticlessynthesizedbyaroomtemperaturesolidstatecoordinationmethod