CPTM Symmetry for the Dirac Equation and Its Extended Version Based on the Vector Representation of the Lorentz Group

We revisit the CPT theorem for the Dirac equation and its extended version based on the vector representation of the Lorentz group. Then it is proposed that CPTM may apply to this fundamental equation for a massive fermion a s a singlet or a doublet with isospin. The symbol M stands here for reversi...

Full description

Bibliographic Details
Main Authors: E. Marsch, Y. Narita
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-06-01
Series:Frontiers in Physics
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fphy.2021.618392/full
Description
Summary:We revisit the CPT theorem for the Dirac equation and its extended version based on the vector representation of the Lorentz group. Then it is proposed that CPTM may apply to this fundamental equation for a massive fermion a s a singlet or a doublet with isospin. The symbol M stands here for reversing the sign of the mass in the Dirac equation, which can be accomplished by operation on it with the so-called gamma-five matrix that plays an essential role for the chirality in the Standard Model. We define the CPTM symmetry for the standard and extended Dirac equation and discuss its physical implications and some possible consequences for general relativity.
ISSN:2296-424X