Parallelization Experience with Four Canonical Econometric Models Using ParMitISEM

This paper presents the parallel computing implementation of the MitISEM algorithm, labeled Parallel MitISEM. The basic MitISEM algorithm provides an automatic and flexible method to approximate a non-elliptical target density using adaptive mixtures of Student-t densities, where only a kernel of th...

Full description

Bibliographic Details
Main Authors: Nalan Baştürk, Stefano Grassi, Lennart Hoogerheide, Herman K. van Dijk
Format: Article
Language:English
Published: MDPI AG 2016-03-01
Series:Econometrics
Subjects:
Online Access:http://www.mdpi.com/2225-1146/4/1/11
_version_ 1828150055992819712
author Nalan Baştürk
Stefano Grassi
Lennart Hoogerheide
Herman K. van Dijk
author_facet Nalan Baştürk
Stefano Grassi
Lennart Hoogerheide
Herman K. van Dijk
author_sort Nalan Baştürk
collection DOAJ
description This paper presents the parallel computing implementation of the MitISEM algorithm, labeled Parallel MitISEM. The basic MitISEM algorithm provides an automatic and flexible method to approximate a non-elliptical target density using adaptive mixtures of Student-t densities, where only a kernel of the target density is required. The approximation can be used as a candidate density in Importance Sampling or Metropolis Hastings methods for Bayesian inference on model parameters and probabilities. We present and discuss four canonical econometric models using a Graphics Processing Unit and a multi-core Central Processing Unit version of the MitISEM algorithm. The results show that the parallelization of the MitISEM algorithm on Graphics Processing Units and multi-core Central Processing Units is straightforward and fast to program using MATLAB. Moreover the speed performance of the Graphics Processing Unit version is much higher than the Central Processing Unit one.
first_indexed 2024-04-11T21:37:51Z
format Article
id doaj.art-ba22d8be6eb14cfca5974afd046e0359
institution Directory Open Access Journal
issn 2225-1146
language English
last_indexed 2024-04-11T21:37:51Z
publishDate 2016-03-01
publisher MDPI AG
record_format Article
series Econometrics
spelling doaj.art-ba22d8be6eb14cfca5974afd046e03592022-12-22T04:01:41ZengMDPI AGEconometrics2225-11462016-03-01411110.3390/econometrics4010011econometrics4010011Parallelization Experience with Four Canonical Econometric Models Using ParMitISEMNalan Baştürk0Stefano Grassi1Lennart Hoogerheide2Herman K. van Dijk3Department of Quantitative Economics, School of Business and Economics, Maastricht University, Maastricht 6211LM, The NetherlandsSchool of Economics, Keynes College, University of Kent, Canterbury CT27NP, UKDepartment of Econometrics and Tinbergen Institute, Vrije Universiteit Amsterdam, Amsterdam 1081HV, The NetherlandsDepartment of Econometrics and Tinbergen Institute, Vrije Universiteit Amsterdam, Amsterdam 1081HV, The NetherlandsThis paper presents the parallel computing implementation of the MitISEM algorithm, labeled Parallel MitISEM. The basic MitISEM algorithm provides an automatic and flexible method to approximate a non-elliptical target density using adaptive mixtures of Student-t densities, where only a kernel of the target density is required. The approximation can be used as a candidate density in Importance Sampling or Metropolis Hastings methods for Bayesian inference on model parameters and probabilities. We present and discuss four canonical econometric models using a Graphics Processing Unit and a multi-core Central Processing Unit version of the MitISEM algorithm. The results show that the parallelization of the MitISEM algorithm on Graphics Processing Units and multi-core Central Processing Units is straightforward and fast to program using MATLAB. Moreover the speed performance of the Graphics Processing Unit version is much higher than the Central Processing Unit one.http://www.mdpi.com/2225-1146/4/1/11Importance samplingparallel computingMitISEMMCMC
spellingShingle Nalan Baştürk
Stefano Grassi
Lennart Hoogerheide
Herman K. van Dijk
Parallelization Experience with Four Canonical Econometric Models Using ParMitISEM
Econometrics
Importance sampling
parallel computing
MitISEM
MCMC
title Parallelization Experience with Four Canonical Econometric Models Using ParMitISEM
title_full Parallelization Experience with Four Canonical Econometric Models Using ParMitISEM
title_fullStr Parallelization Experience with Four Canonical Econometric Models Using ParMitISEM
title_full_unstemmed Parallelization Experience with Four Canonical Econometric Models Using ParMitISEM
title_short Parallelization Experience with Four Canonical Econometric Models Using ParMitISEM
title_sort parallelization experience with four canonical econometric models using parmitisem
topic Importance sampling
parallel computing
MitISEM
MCMC
url http://www.mdpi.com/2225-1146/4/1/11
work_keys_str_mv AT nalanbasturk parallelizationexperiencewithfourcanonicaleconometricmodelsusingparmitisem
AT stefanograssi parallelizationexperiencewithfourcanonicaleconometricmodelsusingparmitisem
AT lennarthoogerheide parallelizationexperiencewithfourcanonicaleconometricmodelsusingparmitisem
AT hermankvandijk parallelizationexperiencewithfourcanonicaleconometricmodelsusingparmitisem