A class of continuous non-associative algebras arising from algebraic groups including $E_8$

We give a construction that takes a simple linear algebraic group G over a field and produces a commutative, unital, and simple non-associative algebra A over that field. Two attractions of this construction are that (1) when G has type $E_8$, the algebra A is obtained by adjoining a unit to the 38...

Full description

Bibliographic Details
Main Authors: Maurice Chayet, Skip Garibaldi
Format: Article
Language:English
Published: Cambridge University Press 2021-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509420000663/type/journal_article
Description
Summary:We give a construction that takes a simple linear algebraic group G over a field and produces a commutative, unital, and simple non-associative algebra A over that field. Two attractions of this construction are that (1) when G has type $E_8$, the algebra A is obtained by adjoining a unit to the 3875-dimensional representation; and (2) it is effective, in that the product operation on A can be implemented on a computer. A description of the algebra in the $E_8$ case has been requested for some time, and interest has been increased by the recent proof that $E_8$ is the full automorphism group of that algebra. The algebras obtained by our construction have an unusual Peirce spectrum.
ISSN:2050-5094