A class of continuous non-associative algebras arising from algebraic groups including $E_8$
We give a construction that takes a simple linear algebraic group G over a field and produces a commutative, unital, and simple non-associative algebra A over that field. Two attractions of this construction are that (1) when G has type $E_8$, the algebra A is obtained by adjoining a unit to the 38...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Cambridge University Press
2021-01-01
|
Series: | Forum of Mathematics, Sigma |
Subjects: | |
Online Access: | https://www.cambridge.org/core/product/identifier/S2050509420000663/type/journal_article |
Summary: | We give a construction that takes a simple linear algebraic group G over a field and produces a commutative, unital, and simple non-associative algebra A over that field. Two attractions of this construction are that (1) when G has type
$E_8$, the algebra A is obtained by adjoining a unit to the 3875-dimensional representation; and (2) it is effective, in that the product operation on A can be implemented on a computer. A description of the algebra in the
$E_8$ case has been requested for some time, and interest has been increased by the recent proof that
$E_8$ is the full automorphism group of that algebra. The algebras obtained by our construction have an unusual Peirce spectrum.
|
---|---|
ISSN: | 2050-5094 |