A Comparison of Different Machine Learning Algorithms in the Classification of Impervious Surfaces: Case Study of the Housing Estate Fort Bema in Warsaw (Poland)

The aim of this study is to extract impervious surfaces and show their spatial distribution, using different machine learning algorithms. For this purpose, geoprocessing and remote sensing techniques were used and three classification methods for digital images were compared, namely Support Vector M...

Full description

Bibliographic Details
Main Authors: Janusz Sobieraj, Marcos Fernández, Dominik Metelski
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/12/12/2115
_version_ 1827641486032764928
author Janusz Sobieraj
Marcos Fernández
Dominik Metelski
author_facet Janusz Sobieraj
Marcos Fernández
Dominik Metelski
author_sort Janusz Sobieraj
collection DOAJ
description The aim of this study is to extract impervious surfaces and show their spatial distribution, using different machine learning algorithms. For this purpose, geoprocessing and remote sensing techniques were used and three classification methods for digital images were compared, namely Support Vector Machines (SVM), Maximum Likelihood (ML) and Random Trees (RT) classifiers. The study area is one of the most prestigious and the largest housing estates in Warsaw (Poland), the Fort Bema housing complex, which is also an exemplary model for hydrological solutions. The study was prepared on the Geographic Information System platform (GIS) using aerial optical images, orthorectified and thus provided with a suitable coordinate system. The use of these data is therefore supported by the accuracy of the resulting infrared channel product with a pixel size of 0.25 m, making the results much more accurate compared to satellite imagery. The results of the SVM, ML and RT classifiers were compared using the confusion matrix, accuracy (Root Mean Square Error /RMSE/) and kappa index. This showed that the three algorithms were able to successfully discriminate between targets. Overall, the three classifiers had errors, but specifically for impervious surfaces, the highest accuracy was achieved with the SVM classifier (the highest percentage of overall accuracy), followed by ML and RT with 91.51%, 91.35% and 84.52% of the results, respectively. A comparison of the visual results and the confusion matrix shows that although visually the RT method appears to be the most detailed classification into pervious and impervious surfaces, the results were not always correct, e.g., water/shadow was detected as an impervious surface. The NDVI index was also mapped for the same spatial study area and its application in the evaluation of pervious surfaces was explained. The results obtained with the GIS platform, presented in this paper, provide a better understanding of how these advanced classifiers work, which in turn can provide insightful guidance for their selection and combination in real-world applications. The paper also provides an overview of the main works/studies dealing with impervious surface mapping, with different methods for their assessment (including the use of conventional remote sensing, NDVI, multisensory and cross-source data, ‘social sensing’ and classification methods such as SVM, ML and RT), as well as an overview of the research results.
first_indexed 2024-03-09T17:15:34Z
format Article
id doaj.art-ba29c528741941c89b3a4af80ed04f02
institution Directory Open Access Journal
issn 2075-5309
language English
last_indexed 2024-03-09T17:15:34Z
publishDate 2022-12-01
publisher MDPI AG
record_format Article
series Buildings
spelling doaj.art-ba29c528741941c89b3a4af80ed04f022023-11-24T13:42:04ZengMDPI AGBuildings2075-53092022-12-011212211510.3390/buildings12122115A Comparison of Different Machine Learning Algorithms in the Classification of Impervious Surfaces: Case Study of the Housing Estate Fort Bema in Warsaw (Poland)Janusz Sobieraj0Marcos Fernández1Dominik Metelski2Department of Building Engineering, Warsaw University of Technology, 00-637 Warsaw, PolandInstitute of Robotics, Information Technologies and Communication Research (IRTIC), University of Valencia, 46980 Valencia, SpainDepartment of International and Spanish Economics, University of Granada, 18071 Granada, SpainThe aim of this study is to extract impervious surfaces and show their spatial distribution, using different machine learning algorithms. For this purpose, geoprocessing and remote sensing techniques were used and three classification methods for digital images were compared, namely Support Vector Machines (SVM), Maximum Likelihood (ML) and Random Trees (RT) classifiers. The study area is one of the most prestigious and the largest housing estates in Warsaw (Poland), the Fort Bema housing complex, which is also an exemplary model for hydrological solutions. The study was prepared on the Geographic Information System platform (GIS) using aerial optical images, orthorectified and thus provided with a suitable coordinate system. The use of these data is therefore supported by the accuracy of the resulting infrared channel product with a pixel size of 0.25 m, making the results much more accurate compared to satellite imagery. The results of the SVM, ML and RT classifiers were compared using the confusion matrix, accuracy (Root Mean Square Error /RMSE/) and kappa index. This showed that the three algorithms were able to successfully discriminate between targets. Overall, the three classifiers had errors, but specifically for impervious surfaces, the highest accuracy was achieved with the SVM classifier (the highest percentage of overall accuracy), followed by ML and RT with 91.51%, 91.35% and 84.52% of the results, respectively. A comparison of the visual results and the confusion matrix shows that although visually the RT method appears to be the most detailed classification into pervious and impervious surfaces, the results were not always correct, e.g., water/shadow was detected as an impervious surface. The NDVI index was also mapped for the same spatial study area and its application in the evaluation of pervious surfaces was explained. The results obtained with the GIS platform, presented in this paper, provide a better understanding of how these advanced classifiers work, which in turn can provide insightful guidance for their selection and combination in real-world applications. The paper also provides an overview of the main works/studies dealing with impervious surface mapping, with different methods for their assessment (including the use of conventional remote sensing, NDVI, multisensory and cross-source data, ‘social sensing’ and classification methods such as SVM, ML and RT), as well as an overview of the research results.https://www.mdpi.com/2075-5309/12/12/2115support vector machines (SVM)maximum likelihood (ML)random trees (RT)impervious surfacesland use and land cover (LULC)normalised difference vegetation index (NDVI)
spellingShingle Janusz Sobieraj
Marcos Fernández
Dominik Metelski
A Comparison of Different Machine Learning Algorithms in the Classification of Impervious Surfaces: Case Study of the Housing Estate Fort Bema in Warsaw (Poland)
Buildings
support vector machines (SVM)
maximum likelihood (ML)
random trees (RT)
impervious surfaces
land use and land cover (LULC)
normalised difference vegetation index (NDVI)
title A Comparison of Different Machine Learning Algorithms in the Classification of Impervious Surfaces: Case Study of the Housing Estate Fort Bema in Warsaw (Poland)
title_full A Comparison of Different Machine Learning Algorithms in the Classification of Impervious Surfaces: Case Study of the Housing Estate Fort Bema in Warsaw (Poland)
title_fullStr A Comparison of Different Machine Learning Algorithms in the Classification of Impervious Surfaces: Case Study of the Housing Estate Fort Bema in Warsaw (Poland)
title_full_unstemmed A Comparison of Different Machine Learning Algorithms in the Classification of Impervious Surfaces: Case Study of the Housing Estate Fort Bema in Warsaw (Poland)
title_short A Comparison of Different Machine Learning Algorithms in the Classification of Impervious Surfaces: Case Study of the Housing Estate Fort Bema in Warsaw (Poland)
title_sort comparison of different machine learning algorithms in the classification of impervious surfaces case study of the housing estate fort bema in warsaw poland
topic support vector machines (SVM)
maximum likelihood (ML)
random trees (RT)
impervious surfaces
land use and land cover (LULC)
normalised difference vegetation index (NDVI)
url https://www.mdpi.com/2075-5309/12/12/2115
work_keys_str_mv AT januszsobieraj acomparisonofdifferentmachinelearningalgorithmsintheclassificationofimpervioussurfacescasestudyofthehousingestatefortbemainwarsawpoland
AT marcosfernandez acomparisonofdifferentmachinelearningalgorithmsintheclassificationofimpervioussurfacescasestudyofthehousingestatefortbemainwarsawpoland
AT dominikmetelski acomparisonofdifferentmachinelearningalgorithmsintheclassificationofimpervioussurfacescasestudyofthehousingestatefortbemainwarsawpoland
AT januszsobieraj comparisonofdifferentmachinelearningalgorithmsintheclassificationofimpervioussurfacescasestudyofthehousingestatefortbemainwarsawpoland
AT marcosfernandez comparisonofdifferentmachinelearningalgorithmsintheclassificationofimpervioussurfacescasestudyofthehousingestatefortbemainwarsawpoland
AT dominikmetelski comparisonofdifferentmachinelearningalgorithmsintheclassificationofimpervioussurfacescasestudyofthehousingestatefortbemainwarsawpoland