The exterior Dirichlet problem for the homogeneous complex k-Hessian equation

In this article, we consider the homogeneous complex kk-Hessian equation in an exterior domain Cn⧹Ω{{\mathbb{C}}}^{n}\setminus \Omega . We prove the existence and uniqueness of the C1,1{C}^{1,1} solution by constructing approximating solutions. The key point for us is to establish the uniform gradie...

Full description

Bibliographic Details
Main Authors: Gao Zhenghuan, Ma Xinan, Zhang Dekai
Format: Article
Language:English
Published: De Gruyter 2023-01-01
Series:Advanced Nonlinear Studies
Subjects:
Online Access:https://doi.org/10.1515/ans-2022-0039
_version_ 1811171904887717888
author Gao Zhenghuan
Ma Xinan
Zhang Dekai
author_facet Gao Zhenghuan
Ma Xinan
Zhang Dekai
author_sort Gao Zhenghuan
collection DOAJ
description In this article, we consider the homogeneous complex kk-Hessian equation in an exterior domain Cn⧹Ω{{\mathbb{C}}}^{n}\setminus \Omega . We prove the existence and uniqueness of the C1,1{C}^{1,1} solution by constructing approximating solutions. The key point for us is to establish the uniform gradient estimate and the second-order estimate.
first_indexed 2024-04-10T17:23:03Z
format Article
id doaj.art-ba2a4ae044854094a9a3625bb584ab86
institution Directory Open Access Journal
issn 2169-0375
language English
last_indexed 2024-04-10T17:23:03Z
publishDate 2023-01-01
publisher De Gruyter
record_format Article
series Advanced Nonlinear Studies
spelling doaj.art-ba2a4ae044854094a9a3625bb584ab862023-02-05T08:43:35ZengDe GruyterAdvanced Nonlinear Studies2169-03752023-01-01231518510.1515/ans-2022-0039The exterior Dirichlet problem for the homogeneous complex k-Hessian equationGao Zhenghuan0Ma Xinan1Zhang Dekai2Department of Mathematics, Shanghai University, Shanghai, 200444, ChinaSchool of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, Anhui Province, ChinaDepartment of Mathematics, Shanghai University, Shanghai, 200444, ChinaIn this article, we consider the homogeneous complex kk-Hessian equation in an exterior domain Cn⧹Ω{{\mathbb{C}}}^{n}\setminus \Omega . We prove the existence and uniqueness of the C1,1{C}^{1,1} solution by constructing approximating solutions. The key point for us is to establish the uniform gradient estimate and the second-order estimate.https://doi.org/10.1515/ans-2022-0039exterior dirichlet problemcomplex k-hessian equationk-subharmonic functiongradient estimate35b6535j25
spellingShingle Gao Zhenghuan
Ma Xinan
Zhang Dekai
The exterior Dirichlet problem for the homogeneous complex k-Hessian equation
Advanced Nonlinear Studies
exterior dirichlet problem
complex k-hessian equation
k-subharmonic function
gradient estimate
35b65
35j25
title The exterior Dirichlet problem for the homogeneous complex k-Hessian equation
title_full The exterior Dirichlet problem for the homogeneous complex k-Hessian equation
title_fullStr The exterior Dirichlet problem for the homogeneous complex k-Hessian equation
title_full_unstemmed The exterior Dirichlet problem for the homogeneous complex k-Hessian equation
title_short The exterior Dirichlet problem for the homogeneous complex k-Hessian equation
title_sort exterior dirichlet problem for the homogeneous complex k hessian equation
topic exterior dirichlet problem
complex k-hessian equation
k-subharmonic function
gradient estimate
35b65
35j25
url https://doi.org/10.1515/ans-2022-0039
work_keys_str_mv AT gaozhenghuan theexteriordirichletproblemforthehomogeneouscomplexkhessianequation
AT maxinan theexteriordirichletproblemforthehomogeneouscomplexkhessianequation
AT zhangdekai theexteriordirichletproblemforthehomogeneouscomplexkhessianequation
AT gaozhenghuan exteriordirichletproblemforthehomogeneouscomplexkhessianequation
AT maxinan exteriordirichletproblemforthehomogeneouscomplexkhessianequation
AT zhangdekai exteriordirichletproblemforthehomogeneouscomplexkhessianequation