A Data-Driven Automatic Design Method for Electric Machines Based on Reinforcement Learning and Evolutionary Optimization
The design problems of electric machines are actually treated as a kind of mixed-integer problem, because the machine shapes are defined by some integer variables, such as number of slots, and the other variables, such as the tooth width, which are here called the fundamental and shape variables, re...
المؤلفون الرئيسيون: | Takahiro Sato, Masafumi Fujita |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
IEEE
2021-01-01
|
سلاسل: | IEEE Access |
الموضوعات: | |
الوصول للمادة أونلاين: | https://ieeexplore.ieee.org/document/9427216/ |
مواد مشابهة
-
Estimating process‐based model parameters from species distribution data using the evolutionary algorithm CMA‐ES
حسب: Victor Van der Meersch, وآخرون
منشور في: (2023-07-01) -
Waveform design through the trade-off relationship between the MI criterion and the SINR criterion
حسب: Bin Wang, وآخرون
منشور في: (2024-12-01) -
Optimization of solder joints in embedded mechatronic systems via Kriging-assisted CMA-ES algorithm
حسب: Hamdani Hamid, وآخرون
منشور في: (2019-01-01) -
Evolutionary Reinforcement Learning: A Systematic Review and Future Directions
حسب: Yuanguo Lin, وآخرون
منشور في: (2025-03-01) -
Fault Diagnosis for Body-in-White Welding Robot Based on Multi-Layer Belief Rule Base
حسب: Bang-Cheng Zhang, وآخرون
منشور في: (2023-04-01)