A Data-Driven Automatic Design Method for Electric Machines Based on Reinforcement Learning and Evolutionary Optimization
The design problems of electric machines are actually treated as a kind of mixed-integer problem, because the machine shapes are defined by some integer variables, such as number of slots, and the other variables, such as the tooth width, which are here called the fundamental and shape variables, re...
Κύριοι συγγραφείς: | Takahiro Sato, Masafumi Fujita |
---|---|
Μορφή: | Άρθρο |
Γλώσσα: | English |
Έκδοση: |
IEEE
2021-01-01
|
Σειρά: | IEEE Access |
Θέματα: | |
Διαθέσιμο Online: | https://ieeexplore.ieee.org/document/9427216/ |
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Estimating process‐based model parameters from species distribution data using the evolutionary algorithm CMA‐ES
ανά: Victor Van der Meersch, κ.ά.
Έκδοση: (2023-07-01) -
Waveform design through the trade-off relationship between the MI criterion and the SINR criterion
ανά: Bin Wang, κ.ά.
Έκδοση: (2024-12-01) -
Optimization of solder joints in embedded mechatronic systems via Kriging-assisted CMA-ES algorithm
ανά: Hamdani Hamid, κ.ά.
Έκδοση: (2019-01-01) -
Evolutionary Reinforcement Learning: A Systematic Review and Future Directions
ανά: Yuanguo Lin, κ.ά.
Έκδοση: (2025-03-01) -
Fault Diagnosis for Body-in-White Welding Robot Based on Multi-Layer Belief Rule Base
ανά: Bang-Cheng Zhang, κ.ά.
Έκδοση: (2023-04-01)