A Data-Driven Automatic Design Method for Electric Machines Based on Reinforcement Learning and Evolutionary Optimization
The design problems of electric machines are actually treated as a kind of mixed-integer problem, because the machine shapes are defined by some integer variables, such as number of slots, and the other variables, such as the tooth width, which are here called the fundamental and shape variables, re...
Main Authors: | Takahiro Sato, Masafumi Fujita |
---|---|
פורמט: | Article |
שפה: | English |
יצא לאור: |
IEEE
2021-01-01
|
סדרה: | IEEE Access |
נושאים: | |
גישה מקוונת: | https://ieeexplore.ieee.org/document/9427216/ |
פריטים דומים
-
Estimating process‐based model parameters from species distribution data using the evolutionary algorithm CMA‐ES
מאת: Victor Van der Meersch, et al.
יצא לאור: (2023-07-01) -
Waveform design through the trade-off relationship between the MI criterion and the SINR criterion
מאת: Bin Wang, et al.
יצא לאור: (2024-12-01) -
Optimization of solder joints in embedded mechatronic systems via Kriging-assisted CMA-ES algorithm
מאת: Hamdani Hamid, et al.
יצא לאור: (2019-01-01) -
Evolutionary Reinforcement Learning: A Systematic Review and Future Directions
מאת: Yuanguo Lin, et al.
יצא לאור: (2025-03-01) -
Fault Diagnosis for Body-in-White Welding Robot Based on Multi-Layer Belief Rule Base
מאת: Bang-Cheng Zhang, et al.
יצא לאור: (2023-04-01)