A Data-Driven Automatic Design Method for Electric Machines Based on Reinforcement Learning and Evolutionary Optimization
The design problems of electric machines are actually treated as a kind of mixed-integer problem, because the machine shapes are defined by some integer variables, such as number of slots, and the other variables, such as the tooth width, which are here called the fundamental and shape variables, re...
Hoofdauteurs: | Takahiro Sato, Masafumi Fujita |
---|---|
Formaat: | Artikel |
Taal: | English |
Gepubliceerd in: |
IEEE
2021-01-01
|
Reeks: | IEEE Access |
Onderwerpen: | |
Online toegang: | https://ieeexplore.ieee.org/document/9427216/ |
Gelijkaardige items
-
Estimating process‐based model parameters from species distribution data using the evolutionary algorithm CMA‐ES
door: Victor Van der Meersch, et al.
Gepubliceerd in: (2023-07-01) -
Waveform design through the trade-off relationship between the MI criterion and the SINR criterion
door: Bin Wang, et al.
Gepubliceerd in: (2024-12-01) -
Optimization of solder joints in embedded mechatronic systems via Kriging-assisted CMA-ES algorithm
door: Hamdani Hamid, et al.
Gepubliceerd in: (2019-01-01) -
Evolutionary Reinforcement Learning: A Systematic Review and Future Directions
door: Yuanguo Lin, et al.
Gepubliceerd in: (2025-03-01) -
Fault Diagnosis for Body-in-White Welding Robot Based on Multi-Layer Belief Rule Base
door: Bang-Cheng Zhang, et al.
Gepubliceerd in: (2023-04-01)