A Data-Driven Automatic Design Method for Electric Machines Based on Reinforcement Learning and Evolutionary Optimization
The design problems of electric machines are actually treated as a kind of mixed-integer problem, because the machine shapes are defined by some integer variables, such as number of slots, and the other variables, such as the tooth width, which are here called the fundamental and shape variables, re...
Главные авторы: | Takahiro Sato, Masafumi Fujita |
---|---|
Формат: | Статья |
Язык: | English |
Опубликовано: |
IEEE
2021-01-01
|
Серии: | IEEE Access |
Предметы: | |
Online-ссылка: | https://ieeexplore.ieee.org/document/9427216/ |
Схожие документы
-
Estimating process‐based model parameters from species distribution data using the evolutionary algorithm CMA‐ES
по: Victor Van der Meersch, и др.
Опубликовано: (2023-07-01) -
Waveform design through the trade-off relationship between the MI criterion and the SINR criterion
по: Bin Wang, и др.
Опубликовано: (2024-12-01) -
Optimization of solder joints in embedded mechatronic systems via Kriging-assisted CMA-ES algorithm
по: Hamdani Hamid, и др.
Опубликовано: (2019-01-01) -
Evolutionary Reinforcement Learning: A Systematic Review and Future Directions
по: Yuanguo Lin, и др.
Опубликовано: (2025-03-01) -
Fault Diagnosis for Body-in-White Welding Robot Based on Multi-Layer Belief Rule Base
по: Bang-Cheng Zhang, и др.
Опубликовано: (2023-04-01)