A Data-Driven Automatic Design Method for Electric Machines Based on Reinforcement Learning and Evolutionary Optimization
The design problems of electric machines are actually treated as a kind of mixed-integer problem, because the machine shapes are defined by some integer variables, such as number of slots, and the other variables, such as the tooth width, which are here called the fundamental and shape variables, re...
Những tác giả chính: | Takahiro Sato, Masafumi Fujita |
---|---|
Định dạng: | Bài viết |
Ngôn ngữ: | English |
Được phát hành: |
IEEE
2021-01-01
|
Loạt: | IEEE Access |
Những chủ đề: | |
Truy cập trực tuyến: | https://ieeexplore.ieee.org/document/9427216/ |
Những quyển sách tương tự
-
Estimating process‐based model parameters from species distribution data using the evolutionary algorithm CMA‐ES
Bằng: Victor Van der Meersch, et al.
Được phát hành: (2023-07-01) -
Waveform design through the trade-off relationship between the MI criterion and the SINR criterion
Bằng: Bin Wang, et al.
Được phát hành: (2024-12-01) -
Optimization of solder joints in embedded mechatronic systems via Kriging-assisted CMA-ES algorithm
Bằng: Hamdani Hamid, et al.
Được phát hành: (2019-01-01) -
Evolutionary Reinforcement Learning: A Systematic Review and Future Directions
Bằng: Yuanguo Lin, et al.
Được phát hành: (2025-03-01) -
Fault Diagnosis for Body-in-White Welding Robot Based on Multi-Layer Belief Rule Base
Bằng: Bang-Cheng Zhang, et al.
Được phát hành: (2023-04-01)