Space Efficient <inline-formula> <tex-math notation="LaTeX">$GF(2^m)$ </tex-math></inline-formula> Multiplier for Special Pentanomials Based on <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>-Term Karatsuba Algorithm

Recently, new multiplication schemes over the binary extension field GF(2<sup>m</sup>) based on an n-term Karatsuba algorithm have been proposed for irreducible trinomials. In this paper, we extend these schemes for trinomials to any irreducible polynomials. We introduce some new types o...

Full description

Bibliographic Details
Main Authors: Sun-Mi Park, Ku-Young Chang, Dowon Hong, Changho Seo
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8984363/
_version_ 1818579519070535680
author Sun-Mi Park
Ku-Young Chang
Dowon Hong
Changho Seo
author_facet Sun-Mi Park
Ku-Young Chang
Dowon Hong
Changho Seo
author_sort Sun-Mi Park
collection DOAJ
description Recently, new multiplication schemes over the binary extension field GF(2<sup>m</sup>) based on an n-term Karatsuba algorithm have been proposed for irreducible trinomials. In this paper, we extend these schemes for trinomials to any irreducible polynomials. We introduce some new types of pentanomials and propose multipliers for those pentanomials utilizing the extended schemes. We evaluate the rigorous space and time complexities of the proposed multipliers, and compare those with similar bit-parallel multipliers for pentanomials. As a main contribution, the best space complexities of our multipliers are 1/2 m<sup>2</sup> + O(m<sup>3/2</sup>) AND gates and 1/2 m<sup>2</sup> + O(m<sup>3/2</sup>) XOR gates, which nearly correspond to the best results for trinomials. Also, specific comparisons for three fields GF(2<sup>163</sup>), GF(2<sup>283</sup>), and GF(2<sup>571</sup>) recommended by NIST show that the proposed multiplier has roughly 40% reduced space complexity compared to the fastest multipliers, while it costs a few more XOR gate delay. It is noticed that our space complexity gain is much greater than the time complexity loss. Moreover, the proposed multiplier has about 21% reduced space complexity than the bestknown space efficient multipliers, while having the same time complexity. The results show that the proposed multipliers are the best space optimized multipliers.
first_indexed 2024-12-16T07:02:59Z
format Article
id doaj.art-ba391f2954334f7abf850a2492266664
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-12-16T07:02:59Z
publishDate 2020-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-ba391f2954334f7abf850a24922666642022-12-21T22:40:07ZengIEEEIEEE Access2169-35362020-01-018273422736010.1109/ACCESS.2020.29717028984363Space Efficient <inline-formula> <tex-math notation="LaTeX">$GF(2^m)$ </tex-math></inline-formula> Multiplier for Special Pentanomials Based on <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>-Term Karatsuba AlgorithmSun-Mi Park0https://orcid.org/0000-0002-3003-6288Ku-Young Chang1https://orcid.org/0000-0001-5529-2774Dowon Hong2https://orcid.org/0000-0001-9690-5055Changho Seo3https://orcid.org/0000-0002-0779-3539Department of Applied Mathematics, Kongju National University, Gongju, South KoreaIntelligent Security Research Group, Electronics and Telecommunications Research Institute (ETRI), Daejeon, South KoreaDepartment of Applied Mathematics, Kongju National University, Gongju, South KoreaDepartment of Applied Mathematics, Kongju National University, Gongju, South KoreaRecently, new multiplication schemes over the binary extension field GF(2<sup>m</sup>) based on an n-term Karatsuba algorithm have been proposed for irreducible trinomials. In this paper, we extend these schemes for trinomials to any irreducible polynomials. We introduce some new types of pentanomials and propose multipliers for those pentanomials utilizing the extended schemes. We evaluate the rigorous space and time complexities of the proposed multipliers, and compare those with similar bit-parallel multipliers for pentanomials. As a main contribution, the best space complexities of our multipliers are 1/2 m<sup>2</sup> + O(m<sup>3/2</sup>) AND gates and 1/2 m<sup>2</sup> + O(m<sup>3/2</sup>) XOR gates, which nearly correspond to the best results for trinomials. Also, specific comparisons for three fields GF(2<sup>163</sup>), GF(2<sup>283</sup>), and GF(2<sup>571</sup>) recommended by NIST show that the proposed multiplier has roughly 40% reduced space complexity compared to the fastest multipliers, while it costs a few more XOR gate delay. It is noticed that our space complexity gain is much greater than the time complexity loss. Moreover, the proposed multiplier has about 21% reduced space complexity than the bestknown space efficient multipliers, while having the same time complexity. The results show that the proposed multipliers are the best space optimized multipliers.https://ieeexplore.ieee.org/document/8984363/Bit-parallel multiplierKaratsuba algorithmMastrovito approachpentanomialshifted polynomial basis
spellingShingle Sun-Mi Park
Ku-Young Chang
Dowon Hong
Changho Seo
Space Efficient <inline-formula> <tex-math notation="LaTeX">$GF(2^m)$ </tex-math></inline-formula> Multiplier for Special Pentanomials Based on <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>-Term Karatsuba Algorithm
IEEE Access
Bit-parallel multiplier
Karatsuba algorithm
Mastrovito approach
pentanomial
shifted polynomial basis
title Space Efficient <inline-formula> <tex-math notation="LaTeX">$GF(2^m)$ </tex-math></inline-formula> Multiplier for Special Pentanomials Based on <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>-Term Karatsuba Algorithm
title_full Space Efficient <inline-formula> <tex-math notation="LaTeX">$GF(2^m)$ </tex-math></inline-formula> Multiplier for Special Pentanomials Based on <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>-Term Karatsuba Algorithm
title_fullStr Space Efficient <inline-formula> <tex-math notation="LaTeX">$GF(2^m)$ </tex-math></inline-formula> Multiplier for Special Pentanomials Based on <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>-Term Karatsuba Algorithm
title_full_unstemmed Space Efficient <inline-formula> <tex-math notation="LaTeX">$GF(2^m)$ </tex-math></inline-formula> Multiplier for Special Pentanomials Based on <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>-Term Karatsuba Algorithm
title_short Space Efficient <inline-formula> <tex-math notation="LaTeX">$GF(2^m)$ </tex-math></inline-formula> Multiplier for Special Pentanomials Based on <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>-Term Karatsuba Algorithm
title_sort space efficient inline formula tex math notation latex gf 2 m tex math inline formula multiplier for special pentanomials based on inline formula tex math notation latex n tex math inline formula term karatsuba algorithm
topic Bit-parallel multiplier
Karatsuba algorithm
Mastrovito approach
pentanomial
shifted polynomial basis
url https://ieeexplore.ieee.org/document/8984363/
work_keys_str_mv AT sunmipark spaceefficientinlineformulatexmathnotationlatexgf2mtexmathinlineformulamultiplierforspecialpentanomialsbasedoninlineformulatexmathnotationlatexntexmathinlineformulatermkaratsubaalgorithm
AT kuyoungchang spaceefficientinlineformulatexmathnotationlatexgf2mtexmathinlineformulamultiplierforspecialpentanomialsbasedoninlineformulatexmathnotationlatexntexmathinlineformulatermkaratsubaalgorithm
AT dowonhong spaceefficientinlineformulatexmathnotationlatexgf2mtexmathinlineformulamultiplierforspecialpentanomialsbasedoninlineformulatexmathnotationlatexntexmathinlineformulatermkaratsubaalgorithm
AT changhoseo spaceefficientinlineformulatexmathnotationlatexgf2mtexmathinlineformulamultiplierforspecialpentanomialsbasedoninlineformulatexmathnotationlatexntexmathinlineformulatermkaratsubaalgorithm