Influences of Ultrasonic Treatments on the Structure and Antioxidant Properties of Sugar Beet Pectin

The objective of this study was to explore the structural changes and oxidation resistance of ultrasonic degradation products of sugar beet pectin (SBP). The changes in the structures and antioxidant activity between SBP and its degradation products were compared. As the ultrasonic treatment time in...

Full description

Bibliographic Details
Main Authors: Yingjie Xu, Jian Zhang, Jinmeng He, Ting Liu, Xiaobing Guo
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/12/5/1020
Description
Summary:The objective of this study was to explore the structural changes and oxidation resistance of ultrasonic degradation products of sugar beet pectin (SBP). The changes in the structures and antioxidant activity between SBP and its degradation products were compared. As the ultrasonic treatment time increased, the content of α-D-1,4-galacturonic acid (GalA) also increased, to 68.28%. In addition, the neutral sugar (NS) content, esterification degree (DE), particle size, intrinsic viscosity and viscosity-average molecular weight (<i>M<sub>V</sub></i>) of the modified SBP decreased. Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM) were used to study the degradation of the SBP structure after ultrasonication. After ultrasonic treatment, the DPPH and ABTS free radical scavenging activities of the modified SBP reached 67.84% and 54.67% at the concentration of 4 mg/mL, respectively, and the thermal stability of modified SBP was also improved. All of the results indicate that the ultrasonic technology is an environmentally friendly, simple, and effective strategy to improve the antioxidant capacity of SBP.
ISSN:2304-8158