Physics-informed machine learning combining experiment and simulation for the design of neodymium-iron-boron permanent magnets with reduced critical-elements content

Rare-earth elements like neodymium, terbium and dysprosium are crucial to the performance of permanent magnets used in various green-energy technologies like hybrid or electric cars. To address the supply risk of those elements, we applied machine-learning techniques to design magnetic materials wit...

Full description

Bibliographic Details
Main Authors: Alexander Kovacs, Johann Fischbacher, Harald Oezelt, Alexander Kornell, Qais Ali, Markus Gusenbauer, Masao Yano, Noritsugu Sakuma, Akihito Kinoshita, Tetsuya Shoji, Akira Kato, Yuan Hong, Stéphane Grenier, Thibaut Devillers, Nora M. Dempsey, Tetsuya Fukushima, Hisazumi Akai, Naoki Kawashima, Takashi Miyake, Thomas Schrefl
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-01-01
Series:Frontiers in Materials
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fmats.2022.1094055/full
_version_ 1797950690011643904
author Alexander Kovacs
Alexander Kovacs
Johann Fischbacher
Johann Fischbacher
Harald Oezelt
Harald Oezelt
Alexander Kornell
Alexander Kornell
Qais Ali
Qais Ali
Markus Gusenbauer
Markus Gusenbauer
Masao Yano
Noritsugu Sakuma
Akihito Kinoshita
Tetsuya Shoji
Akira Kato
Yuan Hong
Stéphane Grenier
Thibaut Devillers
Nora M. Dempsey
Tetsuya Fukushima
Hisazumi Akai
Naoki Kawashima
Takashi Miyake
Thomas Schrefl
Thomas Schrefl
author_facet Alexander Kovacs
Alexander Kovacs
Johann Fischbacher
Johann Fischbacher
Harald Oezelt
Harald Oezelt
Alexander Kornell
Alexander Kornell
Qais Ali
Qais Ali
Markus Gusenbauer
Markus Gusenbauer
Masao Yano
Noritsugu Sakuma
Akihito Kinoshita
Tetsuya Shoji
Akira Kato
Yuan Hong
Stéphane Grenier
Thibaut Devillers
Nora M. Dempsey
Tetsuya Fukushima
Hisazumi Akai
Naoki Kawashima
Takashi Miyake
Thomas Schrefl
Thomas Schrefl
author_sort Alexander Kovacs
collection DOAJ
description Rare-earth elements like neodymium, terbium and dysprosium are crucial to the performance of permanent magnets used in various green-energy technologies like hybrid or electric cars. To address the supply risk of those elements, we applied machine-learning techniques to design magnetic materials with reduced neodymium content and without terbium and dysprosium. However, the performance of the magnet intended to be used in electric motors should be preserved. We developed machine-learning methods that assist materials design by integrating physical models to bridge the gap between length scales, from atomistic to the micrometer-sized granular microstructure of neodymium-iron-boron permanent magnets. Through data assimilation, we combined data from experiments and simulations to build machine-learning models which we used to optimize the chemical composition and the microstructure of the magnet. We applied techniques that help to understand and interpret the results of machine learning predictions. The variables importance shows how the main design variables influence the magnetic properties. High-throughput measurements on compositionally graded sputtered films are a systematic way to generate data for machine data analysis. Using the machine learning models we show how high-performance, Nd-lean magnets can be realized.
first_indexed 2024-04-10T22:19:06Z
format Article
id doaj.art-ba3de6b1961f495380a13d05ea592dea
institution Directory Open Access Journal
issn 2296-8016
language English
last_indexed 2024-04-10T22:19:06Z
publishDate 2023-01-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Materials
spelling doaj.art-ba3de6b1961f495380a13d05ea592dea2023-01-18T05:20:12ZengFrontiers Media S.A.Frontiers in Materials2296-80162023-01-01910.3389/fmats.2022.10940551094055Physics-informed machine learning combining experiment and simulation for the design of neodymium-iron-boron permanent magnets with reduced critical-elements contentAlexander Kovacs0Alexander Kovacs1Johann Fischbacher2Johann Fischbacher3Harald Oezelt4Harald Oezelt5Alexander Kornell6Alexander Kornell7Qais Ali8Qais Ali9Markus Gusenbauer10Markus Gusenbauer11Masao Yano12Noritsugu Sakuma13Akihito Kinoshita14Tetsuya Shoji15Akira Kato16Yuan Hong17Stéphane Grenier18Thibaut Devillers19Nora M. Dempsey20Tetsuya Fukushima21Hisazumi Akai22Naoki Kawashima23Takashi Miyake24Thomas Schrefl25Thomas Schrefl26Christian Doppler Laboratory for magnet design through physics informed machine learning, Danube University Krems, Wiener Neustadt, AustriaDepartment for Integrated Sensor Systems, Danube University Krems, Wiener Neustadt, AustriaChristian Doppler Laboratory for magnet design through physics informed machine learning, Danube University Krems, Wiener Neustadt, AustriaDepartment for Integrated Sensor Systems, Danube University Krems, Wiener Neustadt, AustriaChristian Doppler Laboratory for magnet design through physics informed machine learning, Danube University Krems, Wiener Neustadt, AustriaDepartment for Integrated Sensor Systems, Danube University Krems, Wiener Neustadt, AustriaChristian Doppler Laboratory for magnet design through physics informed machine learning, Danube University Krems, Wiener Neustadt, AustriaDepartment for Integrated Sensor Systems, Danube University Krems, Wiener Neustadt, AustriaChristian Doppler Laboratory for magnet design through physics informed machine learning, Danube University Krems, Wiener Neustadt, AustriaDepartment for Integrated Sensor Systems, Danube University Krems, Wiener Neustadt, AustriaChristian Doppler Laboratory for magnet design through physics informed machine learning, Danube University Krems, Wiener Neustadt, AustriaDepartment for Integrated Sensor Systems, Danube University Krems, Wiener Neustadt, AustriaAdvanced Materials Engineering Division, Toyota Motor Corporation, Susono, JapanAdvanced Materials Engineering Division, Toyota Motor Corporation, Susono, JapanAdvanced Materials Engineering Division, Toyota Motor Corporation, Susono, JapanAdvanced Materials Engineering Division, Toyota Motor Corporation, Susono, JapanAdvanced Materials Engineering Division, Toyota Motor Corporation, Susono, JapanUniversité Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, FranceUniversité Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, FranceUniversité Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, FranceUniversité Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, FranceThe Institute for Solid State Physics, The University of Tokyo, Kashiwa, JapanThe Institute for Solid State Physics, The University of Tokyo, Kashiwa, JapanThe Institute for Solid State Physics, The University of Tokyo, Kashiwa, JapanNational Institute of Advanced Industrial Science and Technology, Tsukuba, JapanChristian Doppler Laboratory for magnet design through physics informed machine learning, Danube University Krems, Wiener Neustadt, AustriaDepartment for Integrated Sensor Systems, Danube University Krems, Wiener Neustadt, AustriaRare-earth elements like neodymium, terbium and dysprosium are crucial to the performance of permanent magnets used in various green-energy technologies like hybrid or electric cars. To address the supply risk of those elements, we applied machine-learning techniques to design magnetic materials with reduced neodymium content and without terbium and dysprosium. However, the performance of the magnet intended to be used in electric motors should be preserved. We developed machine-learning methods that assist materials design by integrating physical models to bridge the gap between length scales, from atomistic to the micrometer-sized granular microstructure of neodymium-iron-boron permanent magnets. Through data assimilation, we combined data from experiments and simulations to build machine-learning models which we used to optimize the chemical composition and the microstructure of the magnet. We applied techniques that help to understand and interpret the results of machine learning predictions. The variables importance shows how the main design variables influence the magnetic properties. High-throughput measurements on compositionally graded sputtered films are a systematic way to generate data for machine data analysis. Using the machine learning models we show how high-performance, Nd-lean magnets can be realized.https://www.frontiersin.org/articles/10.3389/fmats.2022.1094055/fullmachine learning–MLmaterials designNdFeB permanent magnetcombinatorial sputteringrare-earth element (REE)optimization
spellingShingle Alexander Kovacs
Alexander Kovacs
Johann Fischbacher
Johann Fischbacher
Harald Oezelt
Harald Oezelt
Alexander Kornell
Alexander Kornell
Qais Ali
Qais Ali
Markus Gusenbauer
Markus Gusenbauer
Masao Yano
Noritsugu Sakuma
Akihito Kinoshita
Tetsuya Shoji
Akira Kato
Yuan Hong
Stéphane Grenier
Thibaut Devillers
Nora M. Dempsey
Tetsuya Fukushima
Hisazumi Akai
Naoki Kawashima
Takashi Miyake
Thomas Schrefl
Thomas Schrefl
Physics-informed machine learning combining experiment and simulation for the design of neodymium-iron-boron permanent magnets with reduced critical-elements content
Frontiers in Materials
machine learning–ML
materials design
NdFeB permanent magnet
combinatorial sputtering
rare-earth element (REE)
optimization
title Physics-informed machine learning combining experiment and simulation for the design of neodymium-iron-boron permanent magnets with reduced critical-elements content
title_full Physics-informed machine learning combining experiment and simulation for the design of neodymium-iron-boron permanent magnets with reduced critical-elements content
title_fullStr Physics-informed machine learning combining experiment and simulation for the design of neodymium-iron-boron permanent magnets with reduced critical-elements content
title_full_unstemmed Physics-informed machine learning combining experiment and simulation for the design of neodymium-iron-boron permanent magnets with reduced critical-elements content
title_short Physics-informed machine learning combining experiment and simulation for the design of neodymium-iron-boron permanent magnets with reduced critical-elements content
title_sort physics informed machine learning combining experiment and simulation for the design of neodymium iron boron permanent magnets with reduced critical elements content
topic machine learning–ML
materials design
NdFeB permanent magnet
combinatorial sputtering
rare-earth element (REE)
optimization
url https://www.frontiersin.org/articles/10.3389/fmats.2022.1094055/full
work_keys_str_mv AT alexanderkovacs physicsinformedmachinelearningcombiningexperimentandsimulationforthedesignofneodymiumironboronpermanentmagnetswithreducedcriticalelementscontent
AT alexanderkovacs physicsinformedmachinelearningcombiningexperimentandsimulationforthedesignofneodymiumironboronpermanentmagnetswithreducedcriticalelementscontent
AT johannfischbacher physicsinformedmachinelearningcombiningexperimentandsimulationforthedesignofneodymiumironboronpermanentmagnetswithreducedcriticalelementscontent
AT johannfischbacher physicsinformedmachinelearningcombiningexperimentandsimulationforthedesignofneodymiumironboronpermanentmagnetswithreducedcriticalelementscontent
AT haraldoezelt physicsinformedmachinelearningcombiningexperimentandsimulationforthedesignofneodymiumironboronpermanentmagnetswithreducedcriticalelementscontent
AT haraldoezelt physicsinformedmachinelearningcombiningexperimentandsimulationforthedesignofneodymiumironboronpermanentmagnetswithreducedcriticalelementscontent
AT alexanderkornell physicsinformedmachinelearningcombiningexperimentandsimulationforthedesignofneodymiumironboronpermanentmagnetswithreducedcriticalelementscontent
AT alexanderkornell physicsinformedmachinelearningcombiningexperimentandsimulationforthedesignofneodymiumironboronpermanentmagnetswithreducedcriticalelementscontent
AT qaisali physicsinformedmachinelearningcombiningexperimentandsimulationforthedesignofneodymiumironboronpermanentmagnetswithreducedcriticalelementscontent
AT qaisali physicsinformedmachinelearningcombiningexperimentandsimulationforthedesignofneodymiumironboronpermanentmagnetswithreducedcriticalelementscontent
AT markusgusenbauer physicsinformedmachinelearningcombiningexperimentandsimulationforthedesignofneodymiumironboronpermanentmagnetswithreducedcriticalelementscontent
AT markusgusenbauer physicsinformedmachinelearningcombiningexperimentandsimulationforthedesignofneodymiumironboronpermanentmagnetswithreducedcriticalelementscontent
AT masaoyano physicsinformedmachinelearningcombiningexperimentandsimulationforthedesignofneodymiumironboronpermanentmagnetswithreducedcriticalelementscontent
AT noritsugusakuma physicsinformedmachinelearningcombiningexperimentandsimulationforthedesignofneodymiumironboronpermanentmagnetswithreducedcriticalelementscontent
AT akihitokinoshita physicsinformedmachinelearningcombiningexperimentandsimulationforthedesignofneodymiumironboronpermanentmagnetswithreducedcriticalelementscontent
AT tetsuyashoji physicsinformedmachinelearningcombiningexperimentandsimulationforthedesignofneodymiumironboronpermanentmagnetswithreducedcriticalelementscontent
AT akirakato physicsinformedmachinelearningcombiningexperimentandsimulationforthedesignofneodymiumironboronpermanentmagnetswithreducedcriticalelementscontent
AT yuanhong physicsinformedmachinelearningcombiningexperimentandsimulationforthedesignofneodymiumironboronpermanentmagnetswithreducedcriticalelementscontent
AT stephanegrenier physicsinformedmachinelearningcombiningexperimentandsimulationforthedesignofneodymiumironboronpermanentmagnetswithreducedcriticalelementscontent
AT thibautdevillers physicsinformedmachinelearningcombiningexperimentandsimulationforthedesignofneodymiumironboronpermanentmagnetswithreducedcriticalelementscontent
AT noramdempsey physicsinformedmachinelearningcombiningexperimentandsimulationforthedesignofneodymiumironboronpermanentmagnetswithreducedcriticalelementscontent
AT tetsuyafukushima physicsinformedmachinelearningcombiningexperimentandsimulationforthedesignofneodymiumironboronpermanentmagnetswithreducedcriticalelementscontent
AT hisazumiakai physicsinformedmachinelearningcombiningexperimentandsimulationforthedesignofneodymiumironboronpermanentmagnetswithreducedcriticalelementscontent
AT naokikawashima physicsinformedmachinelearningcombiningexperimentandsimulationforthedesignofneodymiumironboronpermanentmagnetswithreducedcriticalelementscontent
AT takashimiyake physicsinformedmachinelearningcombiningexperimentandsimulationforthedesignofneodymiumironboronpermanentmagnetswithreducedcriticalelementscontent
AT thomasschrefl physicsinformedmachinelearningcombiningexperimentandsimulationforthedesignofneodymiumironboronpermanentmagnetswithreducedcriticalelementscontent
AT thomasschrefl physicsinformedmachinelearningcombiningexperimentandsimulationforthedesignofneodymiumironboronpermanentmagnetswithreducedcriticalelementscontent