NONLINEAR STABILITY OF SINUSOIDAL VELAROIDAL SHELL
The nonlinear analysis of thin-walled shells is not a rarity, particularly the nonlinear strength one. Many works are devoted to linear and nonlinear analyses of shells of classical form: cylindrical, spherical, hemispherical, shallow, conical. The concept of shells of complex geometry appears when...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Peoples’ Friendship University of Russia (RUDN University)
2018-02-01
|
Series: | Structural Mechanics of Engineering Constructions and Buildings |
Subjects: | |
Online Access: | http://journals.rudn.ru/structural-mechanics/article/view/17790 |
_version_ | 1830515054151204864 |
---|---|
author | MATHIEU GIL-OULBE ALEXEY S MARKOVICH TIEKOLO DAOU |
author_facet | MATHIEU GIL-OULBE ALEXEY S MARKOVICH TIEKOLO DAOU |
author_sort | MATHIEU GIL-OULBE |
collection | DOAJ |
description | The nonlinear analysis of thin-walled shells is not a rarity, particularly the nonlinear strength one. Many works are devoted to linear and nonlinear analyses of shells of classical form: cylindrical, spherical, hemispherical, shallow, conical. The concept of shells of complex geometry appears when the coefficients of the first and second quadratic forms of their middle surfaces are functions of the curvilinear coordinates. Concerning nonlinearity, it is generally accepted that four different sources of nonlinearity exist in solid mechanics: the geometric nonlinearity, the material nonlinearity and the kinetic nonlinearity. The above theoretical aspect of the nonlinearity, applied to a sinusoidal velaroidal shell with the inner radius r0=1m, the outer radius R=20m and the number of waves n= 8, will give rise to the investigation of its nonlinear buckling resistance. The building material is a concrete. The investigation emphasizes more on the material and the geometric nonlinearities, which are more closed to the reality. Finite element model of the shell consists of 6400 elements and 3280 nodes, the total number of nodal unknown - 18991. For surface modelling was used flat shell elements with six degrees of freedom in the node. The boundary conditions cor- respond to hinged bearing on the outer and inner contours. The result of the investigation is the buckling force of the shell under self-weight and uniformly vertically distributed load on its area, the corresponding numerical values of displacements and the buckling mode |
first_indexed | 2024-12-22T03:14:54Z |
format | Article |
id | doaj.art-ba50508f1ab04253b6bd7703eb86692d |
institution | Directory Open Access Journal |
issn | 1815-5235 2587-8700 |
language | English |
last_indexed | 2024-12-22T03:14:54Z |
publishDate | 2018-02-01 |
publisher | Peoples’ Friendship University of Russia (RUDN University) |
record_format | Article |
series | Structural Mechanics of Engineering Constructions and Buildings |
spelling | doaj.art-ba50508f1ab04253b6bd7703eb86692d2022-12-21T18:40:50ZengPeoples’ Friendship University of Russia (RUDN University)Structural Mechanics of Engineering Constructions and Buildings1815-52352587-87002018-02-01141172210.22363/1815-5235-2018-14-1-17-2216086NONLINEAR STABILITY OF SINUSOIDAL VELAROIDAL SHELLMATHIEU GIL-OULBE0ALEXEY S MARKOVICH1TIEKOLO DAOU2<p>Российский университет дружбы народов, Москва, Россия</p><p>Российский университет дружбы народов, Москва, Россия</p><p>Российский университет дружбы народов, Москва, Россия</p>The nonlinear analysis of thin-walled shells is not a rarity, particularly the nonlinear strength one. Many works are devoted to linear and nonlinear analyses of shells of classical form: cylindrical, spherical, hemispherical, shallow, conical. The concept of shells of complex geometry appears when the coefficients of the first and second quadratic forms of their middle surfaces are functions of the curvilinear coordinates. Concerning nonlinearity, it is generally accepted that four different sources of nonlinearity exist in solid mechanics: the geometric nonlinearity, the material nonlinearity and the kinetic nonlinearity. The above theoretical aspect of the nonlinearity, applied to a sinusoidal velaroidal shell with the inner radius r0=1m, the outer radius R=20m and the number of waves n= 8, will give rise to the investigation of its nonlinear buckling resistance. The building material is a concrete. The investigation emphasizes more on the material and the geometric nonlinearities, which are more closed to the reality. Finite element model of the shell consists of 6400 elements and 3280 nodes, the total number of nodal unknown - 18991. For surface modelling was used flat shell elements with six degrees of freedom in the node. The boundary conditions cor- respond to hinged bearing on the outer and inner contours. The result of the investigation is the buckling force of the shell under self-weight and uniformly vertically distributed load on its area, the corresponding numerical values of displacements and the buckling modehttp://journals.rudn.ru/structural-mechanics/article/view/17790нелинейная устойчивостькомпьютерное моделированиесину- соидальная велароидальная оболочкаустойчивость оболочки сложной формыфизиче- ская нелинейностьгеометрическая нелинейность |
spellingShingle | MATHIEU GIL-OULBE ALEXEY S MARKOVICH TIEKOLO DAOU NONLINEAR STABILITY OF SINUSOIDAL VELAROIDAL SHELL Structural Mechanics of Engineering Constructions and Buildings нелинейная устойчивость компьютерное моделирование сину- соидальная велароидальная оболочка устойчивость оболочки сложной формы физиче- ская нелинейность геометрическая нелинейность |
title | NONLINEAR STABILITY OF SINUSOIDAL VELAROIDAL SHELL |
title_full | NONLINEAR STABILITY OF SINUSOIDAL VELAROIDAL SHELL |
title_fullStr | NONLINEAR STABILITY OF SINUSOIDAL VELAROIDAL SHELL |
title_full_unstemmed | NONLINEAR STABILITY OF SINUSOIDAL VELAROIDAL SHELL |
title_short | NONLINEAR STABILITY OF SINUSOIDAL VELAROIDAL SHELL |
title_sort | nonlinear stability of sinusoidal velaroidal shell |
topic | нелинейная устойчивость компьютерное моделирование сину- соидальная велароидальная оболочка устойчивость оболочки сложной формы физиче- ская нелинейность геометрическая нелинейность |
url | http://journals.rudn.ru/structural-mechanics/article/view/17790 |
work_keys_str_mv | AT mathieugiloulbe nonlinearstabilityofsinusoidalvelaroidalshell AT alexeysmarkovich nonlinearstabilityofsinusoidalvelaroidalshell AT tiekolodaou nonlinearstabilityofsinusoidalvelaroidalshell |