NONLINEAR STABILITY OF SINUSOIDAL VELAROIDAL SHELL

The nonlinear analysis of thin-walled shells is not a rarity, particularly the nonlinear strength one. Many works are devoted to linear and nonlinear analyses of shells of classical form: cylindrical, spherical, hemispherical, shallow, conical. The concept of shells of complex geometry appears when...

Full description

Bibliographic Details
Main Authors: MATHIEU GIL-OULBE, ALEXEY S MARKOVICH, TIEKOLO DAOU
Format: Article
Language:English
Published: Peoples’ Friendship University of Russia (RUDN University) 2018-02-01
Series:Structural Mechanics of Engineering Constructions and Buildings
Subjects:
Online Access:http://journals.rudn.ru/structural-mechanics/article/view/17790
_version_ 1830515054151204864
author MATHIEU GIL-OULBE
ALEXEY S MARKOVICH
TIEKOLO DAOU
author_facet MATHIEU GIL-OULBE
ALEXEY S MARKOVICH
TIEKOLO DAOU
author_sort MATHIEU GIL-OULBE
collection DOAJ
description The nonlinear analysis of thin-walled shells is not a rarity, particularly the nonlinear strength one. Many works are devoted to linear and nonlinear analyses of shells of classical form: cylindrical, spherical, hemispherical, shallow, conical. The concept of shells of complex geometry appears when the coefficients of the first and second quadratic forms of their middle surfaces are functions of the curvilinear coordinates. Concerning nonlinearity, it is generally accepted that four different sources of nonlinearity exist in solid mechanics: the geometric nonlinearity, the material nonlinearity and the kinetic nonlinearity. The above theoretical aspect of the nonlinearity, applied to a sinusoidal velaroidal shell with the inner radius r0=1m, the outer radius R=20m and the number of waves n= 8, will give rise to the investigation of its nonlinear buckling resistance. The building material is a concrete. The investigation emphasizes more on the material and the geometric nonlinearities, which are more closed to the reality. Finite element model of the shell consists of 6400 elements and 3280 nodes, the total number of nodal unknown - 18991. For surface modelling was used flat shell elements with six degrees of freedom in the node. The boundary conditions cor- respond to hinged bearing on the outer and inner contours. The result of the investigation is the buckling force of the shell under self-weight and uniformly vertically distributed load on its area, the corresponding numerical values of displacements and the buckling mode
first_indexed 2024-12-22T03:14:54Z
format Article
id doaj.art-ba50508f1ab04253b6bd7703eb86692d
institution Directory Open Access Journal
issn 1815-5235
2587-8700
language English
last_indexed 2024-12-22T03:14:54Z
publishDate 2018-02-01
publisher Peoples’ Friendship University of Russia (RUDN University)
record_format Article
series Structural Mechanics of Engineering Constructions and Buildings
spelling doaj.art-ba50508f1ab04253b6bd7703eb86692d2022-12-21T18:40:50ZengPeoples’ Friendship University of Russia (RUDN University)Structural Mechanics of Engineering Constructions and Buildings1815-52352587-87002018-02-01141172210.22363/1815-5235-2018-14-1-17-2216086NONLINEAR STABILITY OF SINUSOIDAL VELAROIDAL SHELLMATHIEU GIL-OULBE0ALEXEY S MARKOVICH1TIEKOLO DAOU2<p>Российский университет дружбы народов, Москва, Россия</p><p>Российский университет дружбы народов, Москва, Россия</p><p>Российский университет дружбы народов, Москва, Россия</p>The nonlinear analysis of thin-walled shells is not a rarity, particularly the nonlinear strength one. Many works are devoted to linear and nonlinear analyses of shells of classical form: cylindrical, spherical, hemispherical, shallow, conical. The concept of shells of complex geometry appears when the coefficients of the first and second quadratic forms of their middle surfaces are functions of the curvilinear coordinates. Concerning nonlinearity, it is generally accepted that four different sources of nonlinearity exist in solid mechanics: the geometric nonlinearity, the material nonlinearity and the kinetic nonlinearity. The above theoretical aspect of the nonlinearity, applied to a sinusoidal velaroidal shell with the inner radius r0=1m, the outer radius R=20m and the number of waves n= 8, will give rise to the investigation of its nonlinear buckling resistance. The building material is a concrete. The investigation emphasizes more on the material and the geometric nonlinearities, which are more closed to the reality. Finite element model of the shell consists of 6400 elements and 3280 nodes, the total number of nodal unknown - 18991. For surface modelling was used flat shell elements with six degrees of freedom in the node. The boundary conditions cor- respond to hinged bearing on the outer and inner contours. The result of the investigation is the buckling force of the shell under self-weight and uniformly vertically distributed load on its area, the corresponding numerical values of displacements and the buckling modehttp://journals.rudn.ru/structural-mechanics/article/view/17790нелинейная устойчивостькомпьютерное моделированиесину- соидальная велароидальная оболочкаустойчивость оболочки сложной формыфизиче- ская нелинейностьгеометрическая нелинейность
spellingShingle MATHIEU GIL-OULBE
ALEXEY S MARKOVICH
TIEKOLO DAOU
NONLINEAR STABILITY OF SINUSOIDAL VELAROIDAL SHELL
Structural Mechanics of Engineering Constructions and Buildings
нелинейная устойчивость
компьютерное моделирование
сину- соидальная велароидальная оболочка
устойчивость оболочки сложной формы
физиче- ская нелинейность
геометрическая нелинейность
title NONLINEAR STABILITY OF SINUSOIDAL VELAROIDAL SHELL
title_full NONLINEAR STABILITY OF SINUSOIDAL VELAROIDAL SHELL
title_fullStr NONLINEAR STABILITY OF SINUSOIDAL VELAROIDAL SHELL
title_full_unstemmed NONLINEAR STABILITY OF SINUSOIDAL VELAROIDAL SHELL
title_short NONLINEAR STABILITY OF SINUSOIDAL VELAROIDAL SHELL
title_sort nonlinear stability of sinusoidal velaroidal shell
topic нелинейная устойчивость
компьютерное моделирование
сину- соидальная велароидальная оболочка
устойчивость оболочки сложной формы
физиче- ская нелинейность
геометрическая нелинейность
url http://journals.rudn.ru/structural-mechanics/article/view/17790
work_keys_str_mv AT mathieugiloulbe nonlinearstabilityofsinusoidalvelaroidalshell
AT alexeysmarkovich nonlinearstabilityofsinusoidalvelaroidalshell
AT tiekolodaou nonlinearstabilityofsinusoidalvelaroidalshell