Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine

Water scarcity for agriculture is increasingly evident due to climatic alterations and inadequate management of this resource. Therefore, developing digital models that help improve water resource management to provide solutions to agronomic problems in northern Mexico is necessary. In this context,...

Full description

Bibliographic Details
Main Authors: José Rodolfo Quintana-Molina, Ignacio Sánchez-Cohen, Sergio Iván Jiménez-Jiménez, Mariana de Jesús Marcial-Pablo, Ricardo Trejo-Calzada, Emilio Quintana-Molina
Format: Article
Language:English
Published: Universitat Politécnica de Valencia 2023-07-01
Series:Revista de Teledetección
Subjects:
Online Access:https://polipapers.upv.es/index.php/raet/article/view/19368
_version_ 1797770489596215296
author José Rodolfo Quintana-Molina
Ignacio Sánchez-Cohen
Sergio Iván Jiménez-Jiménez
Mariana de Jesús Marcial-Pablo
Ricardo Trejo-Calzada
Emilio Quintana-Molina
author_facet José Rodolfo Quintana-Molina
Ignacio Sánchez-Cohen
Sergio Iván Jiménez-Jiménez
Mariana de Jesús Marcial-Pablo
Ricardo Trejo-Calzada
Emilio Quintana-Molina
author_sort José Rodolfo Quintana-Molina
collection DOAJ
description Water scarcity for agriculture is increasingly evident due to climatic alterations and inadequate management of this resource. Therefore, developing digital models that help improve water resource management to provide solutions to agronomic problems in northern Mexico is necessary. In this context, the objective of the present research is to calibrate the Optical Trapezoid (OPTRAM) and Thermal-Optical Trapezoid (TOTRAM) models to estimate the volumetric soil moisture at different depths through vegetation indices derived from Landsat-8 and Sentinel-2 satellite images using Google Earth Engine (GEE). Agricultural areas under gravity irrigation and rainfed runoff in the Comarca Lagunera, the lower part of the Hydrological Region No. 36 of the Nazas and Aguanaval rivers were selected for in-situ measurements. The OPTRAM and TOTRAM normalized moisture content (W) estimates were compared with in-situ volumetric soil moisture (Ɵ) data. Results indicate that the predictions of OPTRAM errors using Sentinel-2 images showed RMSE between 0.033 to 0.043 cm3 cm-3 and R2 between 0.66 to 0.75, whereas Landsat-8 errors showed RSME from 0.036 to from 0.036 to 0.057 cm3 cm-3 and R2 between 0.70 to 0.81. On the other hand, TOTRAM errors showed RMSE between 0.045 to 0.053 cm3 cm-3 and R2 between 0.62 to 0.85 through calibrations. This study made it possible to evaluate the most accurate combinations of the pixel distributions of each model and vegetation indices for the estimation of volumetric soil moisture within the different phenological stages of the crops.
first_indexed 2024-03-12T21:23:58Z
format Article
id doaj.art-ba5386aedf4f4befac206db5ee30a78c
institution Directory Open Access Journal
issn 1133-0953
1988-8740
language English
last_indexed 2024-03-12T21:23:58Z
publishDate 2023-07-01
publisher Universitat Politécnica de Valencia
record_format Article
series Revista de Teledetección
spelling doaj.art-ba5386aedf4f4befac206db5ee30a78c2023-07-28T12:04:39ZengUniversitat Politécnica de ValenciaRevista de Teledetección1133-09531988-87402023-07-0162213810.4995/raet.2023.1936818560Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth EngineJosé Rodolfo Quintana-Molina0https://orcid.org/0000-0003-1654-4849Ignacio Sánchez-Cohen1https://orcid.org/0000-0002-9063-7114Sergio Iván Jiménez-Jiménez2https://orcid.org/0000-0001-9776-475XMariana de Jesús Marcial-Pablo3https://orcid.org/0000-0002-4921-7492Ricardo Trejo-Calzada4https://orcid.org/0000-0003-1670-7847Emilio Quintana-Molina5https://orcid.org/0000-0001-8930-8519Chapingo Autonomous UniversityINIFAP-CENID RASPA Centro Nacional de Investigación Disciplinaria en Relación Agua-Suelo-Planta-AtmósferaINIFAP-CENID RASPA Centro Nacional de Investigación Disciplinaria en Relación Agua-Suelo-Planta-AtmósferaINIFAP-CENID RASPA Centro Nacional de Investigación Disciplinaria en Relación Agua-Suelo-Planta-AtmósferaChapingo Autonomous University Wageningen University & Research Water scarcity for agriculture is increasingly evident due to climatic alterations and inadequate management of this resource. Therefore, developing digital models that help improve water resource management to provide solutions to agronomic problems in northern Mexico is necessary. In this context, the objective of the present research is to calibrate the Optical Trapezoid (OPTRAM) and Thermal-Optical Trapezoid (TOTRAM) models to estimate the volumetric soil moisture at different depths through vegetation indices derived from Landsat-8 and Sentinel-2 satellite images using Google Earth Engine (GEE). Agricultural areas under gravity irrigation and rainfed runoff in the Comarca Lagunera, the lower part of the Hydrological Region No. 36 of the Nazas and Aguanaval rivers were selected for in-situ measurements. The OPTRAM and TOTRAM normalized moisture content (W) estimates were compared with in-situ volumetric soil moisture (Ɵ) data. Results indicate that the predictions of OPTRAM errors using Sentinel-2 images showed RMSE between 0.033 to 0.043 cm3 cm-3 and R2 between 0.66 to 0.75, whereas Landsat-8 errors showed RSME from 0.036 to from 0.036 to 0.057 cm3 cm-3 and R2 between 0.70 to 0.81. On the other hand, TOTRAM errors showed RMSE between 0.045 to 0.053 cm3 cm-3 and R2 between 0.62 to 0.85 through calibrations. This study made it possible to evaluate the most accurate combinations of the pixel distributions of each model and vegetation indices for the estimation of volumetric soil moisture within the different phenological stages of the crops.https://polipapers.upv.es/index.php/raet/article/view/19368satellite imagesmodelsvegetation indicespixel distributions
spellingShingle José Rodolfo Quintana-Molina
Ignacio Sánchez-Cohen
Sergio Iván Jiménez-Jiménez
Mariana de Jesús Marcial-Pablo
Ricardo Trejo-Calzada
Emilio Quintana-Molina
Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine
Revista de Teledetección
satellite images
models
vegetation indices
pixel distributions
title Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine
title_full Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine
title_fullStr Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine
title_full_unstemmed Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine
title_short Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine
title_sort calibration of volumetric soil moisture using landsat 8 and sentinel 2 satellite imagery by google earth engine
topic satellite images
models
vegetation indices
pixel distributions
url https://polipapers.upv.es/index.php/raet/article/view/19368
work_keys_str_mv AT joserodolfoquintanamolina calibrationofvolumetricsoilmoistureusinglandsat8andsentinel2satelliteimagerybygoogleearthengine
AT ignaciosanchezcohen calibrationofvolumetricsoilmoistureusinglandsat8andsentinel2satelliteimagerybygoogleearthengine
AT sergioivanjimenezjimenez calibrationofvolumetricsoilmoistureusinglandsat8andsentinel2satelliteimagerybygoogleearthengine
AT marianadejesusmarcialpablo calibrationofvolumetricsoilmoistureusinglandsat8andsentinel2satelliteimagerybygoogleearthengine
AT ricardotrejocalzada calibrationofvolumetricsoilmoistureusinglandsat8andsentinel2satelliteimagerybygoogleearthengine
AT emilioquintanamolina calibrationofvolumetricsoilmoistureusinglandsat8andsentinel2satelliteimagerybygoogleearthengine