Transplanting Neural Progenitor Cells into a Chronic Dorsal Column Lesion Model
Cell transplantation therapy is a promising strategy for spinal cord injury (SCI) repair. Despite advancements in the development of therapeutic strategies in acute and subacute SCI, much less is known about effective strategies for chronic SCI. In previous studies we demonstrated that transplants o...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-02-01
|
Series: | Biomedicines |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-9059/10/2/350 |
_version_ | 1827656710209142784 |
---|---|
author | Kazuo Hayakawa Ying Jin Julien Bouyer Theresa M. Connors Takanobu Otsuka Itzhak Fischer |
author_facet | Kazuo Hayakawa Ying Jin Julien Bouyer Theresa M. Connors Takanobu Otsuka Itzhak Fischer |
author_sort | Kazuo Hayakawa |
collection | DOAJ |
description | Cell transplantation therapy is a promising strategy for spinal cord injury (SCI) repair. Despite advancements in the development of therapeutic strategies in acute and subacute SCI, much less is known about effective strategies for chronic SCI. In previous studies we demonstrated that transplants of neural progenitor cells (NPC) created a permissive environment for axon regeneration and formed a neuronal relay across the injury following an acute dorsal column injury. Here we explored the efficacy of such a strategy in a chronic injury. We tested two preparations of NPCs derived from rat spinal cord at embryonic day 13.5: one prepared using stocks of cultured cells and the other of dissociated cells transplanted without culturing. Transplantation was delayed for 4-, 6- and 12-weeks post injury for a chronic injury model. We found that the dissociated NPC transplants survived and proliferated for at least 5 weeks post transplantation, in contrast to the poor survival of transplants prepared from cultured NPC stocks. The dissociated NPC transplants differentiated into neurons expressing excitatory markers, promoted axon regeneration into the injury/transplant site and extended axons from graft-derived neurons into the host. These results support the potential of NPC transplants to form neuronal relays across a chronic SCI, but they also underscore the challenges of achieving efficient cell survival in the environment of a chronic injury. |
first_indexed | 2024-03-09T22:33:10Z |
format | Article |
id | doaj.art-ba573196c9eb4ba091554eb3ad45b7b6 |
institution | Directory Open Access Journal |
issn | 2227-9059 |
language | English |
last_indexed | 2024-03-09T22:33:10Z |
publishDate | 2022-02-01 |
publisher | MDPI AG |
record_format | Article |
series | Biomedicines |
spelling | doaj.art-ba573196c9eb4ba091554eb3ad45b7b62023-11-23T18:54:14ZengMDPI AGBiomedicines2227-90592022-02-0110235010.3390/biomedicines10020350Transplanting Neural Progenitor Cells into a Chronic Dorsal Column Lesion ModelKazuo Hayakawa0Ying Jin1Julien Bouyer2Theresa M. Connors3Takanobu Otsuka4Itzhak Fischer5Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USADepartment of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USADepartment of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USADepartment of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USADepartment of Orthopaedic Surgery, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, JapanDepartment of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USACell transplantation therapy is a promising strategy for spinal cord injury (SCI) repair. Despite advancements in the development of therapeutic strategies in acute and subacute SCI, much less is known about effective strategies for chronic SCI. In previous studies we demonstrated that transplants of neural progenitor cells (NPC) created a permissive environment for axon regeneration and formed a neuronal relay across the injury following an acute dorsal column injury. Here we explored the efficacy of such a strategy in a chronic injury. We tested two preparations of NPCs derived from rat spinal cord at embryonic day 13.5: one prepared using stocks of cultured cells and the other of dissociated cells transplanted without culturing. Transplantation was delayed for 4-, 6- and 12-weeks post injury for a chronic injury model. We found that the dissociated NPC transplants survived and proliferated for at least 5 weeks post transplantation, in contrast to the poor survival of transplants prepared from cultured NPC stocks. The dissociated NPC transplants differentiated into neurons expressing excitatory markers, promoted axon regeneration into the injury/transplant site and extended axons from graft-derived neurons into the host. These results support the potential of NPC transplants to form neuronal relays across a chronic SCI, but they also underscore the challenges of achieving efficient cell survival in the environment of a chronic injury.https://www.mdpi.com/2227-9059/10/2/350neuronal progenitor cellschronic spinal cord injurycell transplantationsensory systemaxon regeneration |
spellingShingle | Kazuo Hayakawa Ying Jin Julien Bouyer Theresa M. Connors Takanobu Otsuka Itzhak Fischer Transplanting Neural Progenitor Cells into a Chronic Dorsal Column Lesion Model Biomedicines neuronal progenitor cells chronic spinal cord injury cell transplantation sensory system axon regeneration |
title | Transplanting Neural Progenitor Cells into a Chronic Dorsal Column Lesion Model |
title_full | Transplanting Neural Progenitor Cells into a Chronic Dorsal Column Lesion Model |
title_fullStr | Transplanting Neural Progenitor Cells into a Chronic Dorsal Column Lesion Model |
title_full_unstemmed | Transplanting Neural Progenitor Cells into a Chronic Dorsal Column Lesion Model |
title_short | Transplanting Neural Progenitor Cells into a Chronic Dorsal Column Lesion Model |
title_sort | transplanting neural progenitor cells into a chronic dorsal column lesion model |
topic | neuronal progenitor cells chronic spinal cord injury cell transplantation sensory system axon regeneration |
url | https://www.mdpi.com/2227-9059/10/2/350 |
work_keys_str_mv | AT kazuohayakawa transplantingneuralprogenitorcellsintoachronicdorsalcolumnlesionmodel AT yingjin transplantingneuralprogenitorcellsintoachronicdorsalcolumnlesionmodel AT julienbouyer transplantingneuralprogenitorcellsintoachronicdorsalcolumnlesionmodel AT theresamconnors transplantingneuralprogenitorcellsintoachronicdorsalcolumnlesionmodel AT takanobuotsuka transplantingneuralprogenitorcellsintoachronicdorsalcolumnlesionmodel AT itzhakfischer transplantingneuralprogenitorcellsintoachronicdorsalcolumnlesionmodel |