Synthesis, Characterization, and Biosorption of Cu<sup>2+</sup> and Pb<sup>2+</sup> Ions from an Aqueous Solution Using Biochar Derived from Orange Peels

In this study, orange peel (OP) biochar was used as a bio-sorbent for the removal of copper and lead from wastewater in single and binary systems. The equilibrium and kinetic studies were conducted at a pH value of 5, which was the maximum adsorption pH value for both metal ions. The equilibrium stu...

Full description

Bibliographic Details
Main Authors: Felicia Omolara Afolabi, Paul Musonge
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/28/20/7050
Description
Summary:In this study, orange peel (OP) biochar was used as a bio-sorbent for the removal of copper and lead from wastewater in single and binary systems. The equilibrium and kinetic studies were conducted at a pH value of 5, which was the maximum adsorption pH value for both metal ions. The equilibrium studies were investigated at a varying initial concentration (10–200 mg/L) with a constant dosage of 0.1 g, while the kinetic studies were conducted at a fixed initial concentration of 200 mg/L with a constant dosage of 1 g/L for both single and binary systems. The maximum adsorption capacity of the orange peel biochar was 28.06 mg/g, 26.83 mg/g, 30.12 mg/g and 27.71 mg/g for single Cu<sup>2+</sup>, binary Cu<sup>2+</sup>, single Pb<sup>2+</sup> and binary Pb<sup>2+</sup> systems, respectively. The Langmuir isotherm model fitted the experimental data, suggesting that adsorption occurred on a monolayer, while the pseudo-second-order model performed well with the kinetic data. The point of zero charge (pH<sub>pzc</sub>) of the orange peel biochar was found to be 10.03, which revealed that the surface of the bio-sorbent contains basic groups. A Fourier infrared transform (FTIR) spectroscope and scanning electron microscope, coupled with energy dispersive x-ray (SEM-EDX) and x-ray diffraction analyses, were used to determine the functional groups, surface morphology, and inorganic elements present on the surface of the bio-sorbent, respectively. The results obtained have shown that orange peel biochar is efficient for the removal of Cu<sup>2+</sup> and Pb<sup>2+</sup> ions from an aqueous solution.
ISSN:1420-3049