Speech Enhancement for Hearing Impaired Based on Bandpass Filters and a Compound Deep Denoising Autoencoder

Deep neural networks have been applied for speech enhancements efficiently. However, for large variations of speech patterns and noisy environments, an individual neural network with a fixed number of hidden layers causes strong interference, which can lead to a slow learning process, poor generalis...

Full description

Bibliographic Details
Main Authors: Raghad Yaseen Lazim AL-Taai, Xiaojun Wu
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/8/1310
Description
Summary:Deep neural networks have been applied for speech enhancements efficiently. However, for large variations of speech patterns and noisy environments, an individual neural network with a fixed number of hidden layers causes strong interference, which can lead to a slow learning process, poor generalisation in an unknown signal-to-noise ratio in new inputs, and some residual noise in the enhanced output. In this paper, we present a new approach for the hearing impaired based on combining two stages: (1) a set of bandpass filters that split up the signal into eight separate bands each performing a frequency analysis of the speech signal; (2) multiple deep denoising autoencoder networks, with each working for a small specific enhancement task and learning to handle a subset of the whole training set. To evaluate the performance of the approach, the hearing-aid speech perception index, the hearing aid sound quality index, and the perceptual evaluation of speech quality were used. Improvements in speech quality and intelligibility were evaluated using seven subjects of sensorineural hearing loss audiogram. We compared the performance of the proposed approach with individual denoising autoencoder networks with three and five hidden layers. The experimental results showed that the proposed approach yielded higher quality and was more intelligible compared with three and five layers.
ISSN:2073-8994