Porous Electropolymerized Films of Ruthenium Complex: Photoelectrochemical Properties and Photoelectrocatalytic Synthesis of Hydrogen Peroxide
The photoelectrochemical cells (PECs) performing high-efficiency conversions of solar energy into both electricity and high value-added chemicals are highly desirable but rather challenging. Herein, we demonstrate that a PEC using the oxidatively electropolymerized film of a heteroleptic Ru(II) comp...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-02-01
|
Series: | Molecules |
Subjects: | |
Online Access: | https://www.mdpi.com/1420-3049/29/3/734 |
_version_ | 1827354676068089856 |
---|---|
author | Hong-Ju Yin Ke-Zhi Wang |
author_facet | Hong-Ju Yin Ke-Zhi Wang |
author_sort | Hong-Ju Yin |
collection | DOAJ |
description | The photoelectrochemical cells (PECs) performing high-efficiency conversions of solar energy into both electricity and high value-added chemicals are highly desirable but rather challenging. Herein, we demonstrate that a PEC using the oxidatively electropolymerized film of a heteroleptic Ru(II) complex of [Ru(bpy)(<b>L</b>)<sub>2</sub>](PF<sub>6</sub>)<sub>2</sub> <b>Ru1</b> {bpy and <b>L</b> stand for 2,2′-bipyridine and 1-phenyl-2-(4-vinylphenyl)-1<i>H</i>-imidazo[4,5-<i>f</i>][1,10]phenanthroline respectively}, poly<b>Ru1</b>, as a working electrode performed both efficient in situ synthesis of hydrogen peroxide and photocurrent generation/switching. Specifically, when biased at −0.4 V vs. saturated calomel electrode and illuminated with 100 mW·cm<sup>−2</sup> white light, the PEC showed a significant cathodic photocurrent density of 9.64 μA·cm<sup>−2</sup>. Furthermore, an increase in the concentrations of quinhydrone in the electrolyte solution enabled the photocurrent polarity to switch from cathodic to anodic, and the anodic photocurrent density reached as high as 11.4 μA·cm<sup>−2</sup>. Interestingly, in this single-compartment PEC, the hydrogen peroxide yield reached 2.63 μmol·cm<sup>−2</sup> in the neutral electrolyte solution. This study will serve as a guide for the design of high-efficiency metal-complex-based molecular systems performing photoelectric conversion/switching and photoelectrochemical oxygen reduction to hydrogen peroxide. |
first_indexed | 2024-03-08T03:52:05Z |
format | Article |
id | doaj.art-ba75239ef1554c69a9e20c82c040fb25 |
institution | Directory Open Access Journal |
issn | 1420-3049 |
language | English |
last_indexed | 2024-03-08T03:52:05Z |
publishDate | 2024-02-01 |
publisher | MDPI AG |
record_format | Article |
series | Molecules |
spelling | doaj.art-ba75239ef1554c69a9e20c82c040fb252024-02-09T15:19:14ZengMDPI AGMolecules1420-30492024-02-0129373410.3390/molecules29030734Porous Electropolymerized Films of Ruthenium Complex: Photoelectrochemical Properties and Photoelectrocatalytic Synthesis of Hydrogen PeroxideHong-Ju Yin0Ke-Zhi Wang1Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, ChinaBeijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, ChinaThe photoelectrochemical cells (PECs) performing high-efficiency conversions of solar energy into both electricity and high value-added chemicals are highly desirable but rather challenging. Herein, we demonstrate that a PEC using the oxidatively electropolymerized film of a heteroleptic Ru(II) complex of [Ru(bpy)(<b>L</b>)<sub>2</sub>](PF<sub>6</sub>)<sub>2</sub> <b>Ru1</b> {bpy and <b>L</b> stand for 2,2′-bipyridine and 1-phenyl-2-(4-vinylphenyl)-1<i>H</i>-imidazo[4,5-<i>f</i>][1,10]phenanthroline respectively}, poly<b>Ru1</b>, as a working electrode performed both efficient in situ synthesis of hydrogen peroxide and photocurrent generation/switching. Specifically, when biased at −0.4 V vs. saturated calomel electrode and illuminated with 100 mW·cm<sup>−2</sup> white light, the PEC showed a significant cathodic photocurrent density of 9.64 μA·cm<sup>−2</sup>. Furthermore, an increase in the concentrations of quinhydrone in the electrolyte solution enabled the photocurrent polarity to switch from cathodic to anodic, and the anodic photocurrent density reached as high as 11.4 μA·cm<sup>−2</sup>. Interestingly, in this single-compartment PEC, the hydrogen peroxide yield reached 2.63 μmol·cm<sup>−2</sup> in the neutral electrolyte solution. This study will serve as a guide for the design of high-efficiency metal-complex-based molecular systems performing photoelectric conversion/switching and photoelectrochemical oxygen reduction to hydrogen peroxide.https://www.mdpi.com/1420-3049/29/3/734ruthenium complexphotoelectrochemical propertyhydrogen peroxidemodified electrodephotoelectrochemical oxygen reductionelectropolymerization |
spellingShingle | Hong-Ju Yin Ke-Zhi Wang Porous Electropolymerized Films of Ruthenium Complex: Photoelectrochemical Properties and Photoelectrocatalytic Synthesis of Hydrogen Peroxide Molecules ruthenium complex photoelectrochemical property hydrogen peroxide modified electrode photoelectrochemical oxygen reduction electropolymerization |
title | Porous Electropolymerized Films of Ruthenium Complex: Photoelectrochemical Properties and Photoelectrocatalytic Synthesis of Hydrogen Peroxide |
title_full | Porous Electropolymerized Films of Ruthenium Complex: Photoelectrochemical Properties and Photoelectrocatalytic Synthesis of Hydrogen Peroxide |
title_fullStr | Porous Electropolymerized Films of Ruthenium Complex: Photoelectrochemical Properties and Photoelectrocatalytic Synthesis of Hydrogen Peroxide |
title_full_unstemmed | Porous Electropolymerized Films of Ruthenium Complex: Photoelectrochemical Properties and Photoelectrocatalytic Synthesis of Hydrogen Peroxide |
title_short | Porous Electropolymerized Films of Ruthenium Complex: Photoelectrochemical Properties and Photoelectrocatalytic Synthesis of Hydrogen Peroxide |
title_sort | porous electropolymerized films of ruthenium complex photoelectrochemical properties and photoelectrocatalytic synthesis of hydrogen peroxide |
topic | ruthenium complex photoelectrochemical property hydrogen peroxide modified electrode photoelectrochemical oxygen reduction electropolymerization |
url | https://www.mdpi.com/1420-3049/29/3/734 |
work_keys_str_mv | AT hongjuyin porouselectropolymerizedfilmsofrutheniumcomplexphotoelectrochemicalpropertiesandphotoelectrocatalyticsynthesisofhydrogenperoxide AT kezhiwang porouselectropolymerizedfilmsofrutheniumcomplexphotoelectrochemicalpropertiesandphotoelectrocatalyticsynthesisofhydrogenperoxide |