(<i>ω</i>,<i>ρ</i>)-BVP Solutions of Impulsive Differential Equations of Fractional Order on Banach Spaces

The paper focuses on exploring the existence and uniqueness of a specific solution to a class of Caputo impulsive fractional differential equations with boundary value conditions on Banach space, referred to as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" displ...

Full description

Bibliographic Details
Main Authors: Michal Fečkan, Marko Kostić, Daniel Velinov
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/14/3086
_version_ 1797588443330510848
author Michal Fečkan
Marko Kostić
Daniel Velinov
author_facet Michal Fečkan
Marko Kostić
Daniel Velinov
author_sort Michal Fečkan
collection DOAJ
description The paper focuses on exploring the existence and uniqueness of a specific solution to a class of Caputo impulsive fractional differential equations with boundary value conditions on Banach space, referred to as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>ω</mi><mo>,</mo><mi>ρ</mi><mo>)</mo></mrow></semantics></math></inline-formula>-BVP solution. The proof of the main results of this study involves the application of the Banach contraction mapping principle and Schaefer’s fixed point theorem. Furthermore, we provide the necessary conditions for the convexity of the set of solutions of the analyzed impulsive fractional differential boundary value problem. To enhance the comprehension and practical application of our findings, we conclude the paper by presenting two illustrative examples that demonstrate the applicability of the obtained results.
first_indexed 2024-03-11T00:52:05Z
format Article
id doaj.art-ba7e7b9cf81d46bb8cca317f7e4b6b80
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T00:52:05Z
publishDate 2023-07-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-ba7e7b9cf81d46bb8cca317f7e4b6b802023-11-18T20:20:20ZengMDPI AGMathematics2227-73902023-07-011114308610.3390/math11143086(<i>ω</i>,<i>ρ</i>)-BVP Solutions of Impulsive Differential Equations of Fractional Order on Banach SpacesMichal Fečkan0Marko Kostić1Daniel Velinov2Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 842 48 Bratislava, SlovakiaFaculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21125 Novi Sad, SerbiaDepartment for Mathematics and Informatics, Faculty of Civil Engineering, Ss. Cyril and Methodius University in Skopje, Partizanski Odredi 24, P.O. Box 560, 1000 Skopje, North MacedoniaThe paper focuses on exploring the existence and uniqueness of a specific solution to a class of Caputo impulsive fractional differential equations with boundary value conditions on Banach space, referred to as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>ω</mi><mo>,</mo><mi>ρ</mi><mo>)</mo></mrow></semantics></math></inline-formula>-BVP solution. The proof of the main results of this study involves the application of the Banach contraction mapping principle and Schaefer’s fixed point theorem. Furthermore, we provide the necessary conditions for the convexity of the set of solutions of the analyzed impulsive fractional differential boundary value problem. To enhance the comprehension and practical application of our findings, we conclude the paper by presenting two illustrative examples that demonstrate the applicability of the obtained results.https://www.mdpi.com/2227-7390/11/14/3086(<i>ω</i>,<i>ρ</i>)-BVP solutionsboundary value problemimpulsive fractional equations
spellingShingle Michal Fečkan
Marko Kostić
Daniel Velinov
(<i>ω</i>,<i>ρ</i>)-BVP Solutions of Impulsive Differential Equations of Fractional Order on Banach Spaces
Mathematics
(<i>ω</i>,<i>ρ</i>)-BVP solutions
boundary value problem
impulsive fractional equations
title (<i>ω</i>,<i>ρ</i>)-BVP Solutions of Impulsive Differential Equations of Fractional Order on Banach Spaces
title_full (<i>ω</i>,<i>ρ</i>)-BVP Solutions of Impulsive Differential Equations of Fractional Order on Banach Spaces
title_fullStr (<i>ω</i>,<i>ρ</i>)-BVP Solutions of Impulsive Differential Equations of Fractional Order on Banach Spaces
title_full_unstemmed (<i>ω</i>,<i>ρ</i>)-BVP Solutions of Impulsive Differential Equations of Fractional Order on Banach Spaces
title_short (<i>ω</i>,<i>ρ</i>)-BVP Solutions of Impulsive Differential Equations of Fractional Order on Banach Spaces
title_sort i ω i i ρ i bvp solutions of impulsive differential equations of fractional order on banach spaces
topic (<i>ω</i>,<i>ρ</i>)-BVP solutions
boundary value problem
impulsive fractional equations
url https://www.mdpi.com/2227-7390/11/14/3086
work_keys_str_mv AT michalfeckan iōiiribvpsolutionsofimpulsivedifferentialequationsoffractionalorderonbanachspaces
AT markokostic iōiiribvpsolutionsofimpulsivedifferentialequationsoffractionalorderonbanachspaces
AT danielvelinov iōiiribvpsolutionsofimpulsivedifferentialequationsoffractionalorderonbanachspaces