Summary: | Background and Objectives: Atrial fibrillation (AF) is one of the most common arrhythmias clinically. Aging tends to increase the risk of AF, which also increases the burden of other comorbidities, including coronary artery disease (CAD), and even heart failure (HF). The precise detection of AF is a challenge due to its intermittence and unpredictability. A method for the accurate detection of AF is still needed. Methods: A deep learning model was used to detect atrial fibrillation. Here, a distinction was not made between AF and atrial flutter (AFL), both of which manifest as a similar pattern on an electrocardiogram (ECG). This method not only discriminated AF from normal rhythm of the heart, but also detected its onset and offset. The proposed model involved residual blocks and a Transformer encoder. Results and Conclusions: The data used for training were obtained from the CPSC2021 Challenge, and were collected using dynamic ECG devices. Tests on four public datasets validated the availability of the proposed method. The best performance for AF rhythm testing attained an accuracy of 98.67%, a sensitivity of 87.69%, and a specificity of 98.56%. In onset and offset detection, it obtained a sensitivity of 95.90% and 87.70%, respectively. The algorithm with a low FPR of 0.46% was able to reduce troubling false alarms. The model had a great capability to discriminate AF from normal rhythm and to detect its onset and offset. Noise stress tests were conducted after mixing three types of noise. We visualized the model’s features using a heatmap and illustrated its interpretability. The model focused directly on the crucial ECG waveform where showed obvious characteristics of AF.
|