Eigenvalue approach to coupled thermoelasticity in a rotating isotropic medium

In this paper the linear theory of the thermoelasticity has been employed to study the effect of the rotation in a thermoelastic half-space containing heat source on the boundary of the half-space. It is assumed that the medium under consideration is traction free, homogeneous, isotropic, as well as...

Full description

Bibliographic Details
Main Authors: F.S. Bayones, A.M. Abd-Alla
Format: Article
Language:English
Published: Elsevier 2018-03-01
Series:Results in Physics
Online Access:http://www.sciencedirect.com/science/article/pii/S2211379717307829
Description
Summary:In this paper the linear theory of the thermoelasticity has been employed to study the effect of the rotation in a thermoelastic half-space containing heat source on the boundary of the half-space. It is assumed that the medium under consideration is traction free, homogeneous, isotropic, as well as without energy dissipation. The normal mode analysis has been applied in the basic equations of coupled thermoelasticity and finally the resulting equations are written in the form of a vector- matrix differential equation which is then solved by eigenvalue approach. Numerical results for the displacement components, stresses, and temperature are given and illustrated graphically. Comparison was made with the results obtained in the presence and absence of the rotation. The results indicate that the effect of rotation, non-dimensional thermal wave and time are very pronounced. Keywords: Thermal stresses, Thermoelasticity, Energy dissipation, Rotation, Half-space
ISSN:2211-3797