Optimized scalable CuB catalyst with promising carbon footprint for the electrochemical CO2 reduction to ethylene

Defossilizing ethylene production to decrease CO2 emissions is an integral challenge in the context of climate change, as ethylene is one of the most important bulk chemicals. Electrochemical CO2 reduction is a promising alternative to conventional steam cracking, reducing the carbon footprint of et...

Full description

Bibliographic Details
Main Authors: Marco Löffelholz, Jonas Weidner, Jan Hartmann, Hesam Ostovari, Jens Osiewacz, Stefan Engbers, Barbara Ellendorff, João R.C. Junqueira, Katja Weichert, Niklas von der Assen, Wolfgang Schuhmann, Thomas Turek
Format: Article
Language:English
Published: Elsevier 2023-01-01
Series:Sustainable Chemistry for Climate Action
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S277282692300024X
_version_ 1797398924311396352
author Marco Löffelholz
Jonas Weidner
Jan Hartmann
Hesam Ostovari
Jens Osiewacz
Stefan Engbers
Barbara Ellendorff
João R.C. Junqueira
Katja Weichert
Niklas von der Assen
Wolfgang Schuhmann
Thomas Turek
author_facet Marco Löffelholz
Jonas Weidner
Jan Hartmann
Hesam Ostovari
Jens Osiewacz
Stefan Engbers
Barbara Ellendorff
João R.C. Junqueira
Katja Weichert
Niklas von der Assen
Wolfgang Schuhmann
Thomas Turek
author_sort Marco Löffelholz
collection DOAJ
description Defossilizing ethylene production to decrease CO2 emissions is an integral challenge in the context of climate change, as ethylene is one of the most important bulk chemicals. Electrochemical CO2 reduction is a promising alternative to conventional steam cracking, reducing the carbon footprint of ethylene production when coupled with renewable energy sources. In this work, we present the optimization of a boron-doped copper catalyst towards higher selectivity for ethylene. The method for catalyst preparation is optimized, obtaining larger batch sizes while maintaining high ethylene selectivity. Additionally, life cycle assessment is applied to investigate the environmental impacts of electrochemical CO2 reduction and to compare its carbon footprint with alternative pathways for ethylene production. Altogether, the scaled-up catalyst achieves promising electrochemical results while significantly reducing the carbon footprint for ethylene production in comparison to the conventional production pathway when combined with low-emission energy.
first_indexed 2024-03-09T01:32:34Z
format Article
id doaj.art-ba91a3e49bf94b749b09d1f12c0c5594
institution Directory Open Access Journal
issn 2772-8269
language English
last_indexed 2024-03-09T01:32:34Z
publishDate 2023-01-01
publisher Elsevier
record_format Article
series Sustainable Chemistry for Climate Action
spelling doaj.art-ba91a3e49bf94b749b09d1f12c0c55942023-12-09T06:09:30ZengElsevierSustainable Chemistry for Climate Action2772-82692023-01-013100035Optimized scalable CuB catalyst with promising carbon footprint for the electrochemical CO2 reduction to ethyleneMarco Löffelholz0Jonas Weidner1Jan Hartmann2Hesam Ostovari3Jens Osiewacz4Stefan Engbers5Barbara Ellendorff6João R.C. Junqueira7Katja Weichert8Niklas von der Assen9Wolfgang Schuhmann10Thomas Turek11Corresponding author.; Institute of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Leibnizstraße 17, Clausthal-Zellerfeld 38678, GermanyAnalytical Chemistry – Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, Bochum 44780, GermanyInstitute of Technical Thermodynamics, RWTH Aachen University, Schinkelstraße 8, Aachen 52062, GermanyInstitute of Technical Thermodynamics, RWTH Aachen University, Schinkelstraße 8, Aachen 52062, GermanyInstitute of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Leibnizstraße 17, Clausthal-Zellerfeld 38678, GermanyInstitute of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Leibnizstraße 17, Clausthal-Zellerfeld 38678, Germany; Covestro Deutschland AG, Leverkusen 51365, GermanyInstitute of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Leibnizstraße 17, Clausthal-Zellerfeld 38678, GermanyAnalytical Chemistry – Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, Bochum 44780, GermanyCovestro Deutschland AG, Leverkusen 51365, GermanyInstitute of Technical Thermodynamics, RWTH Aachen University, Schinkelstraße 8, Aachen 52062, GermanyAnalytical Chemistry – Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, Bochum 44780, GermanyInstitute of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Leibnizstraße 17, Clausthal-Zellerfeld 38678, GermanyDefossilizing ethylene production to decrease CO2 emissions is an integral challenge in the context of climate change, as ethylene is one of the most important bulk chemicals. Electrochemical CO2 reduction is a promising alternative to conventional steam cracking, reducing the carbon footprint of ethylene production when coupled with renewable energy sources. In this work, we present the optimization of a boron-doped copper catalyst towards higher selectivity for ethylene. The method for catalyst preparation is optimized, obtaining larger batch sizes while maintaining high ethylene selectivity. Additionally, life cycle assessment is applied to investigate the environmental impacts of electrochemical CO2 reduction and to compare its carbon footprint with alternative pathways for ethylene production. Altogether, the scaled-up catalyst achieves promising electrochemical results while significantly reducing the carbon footprint for ethylene production in comparison to the conventional production pathway when combined with low-emission energy.http://www.sciencedirect.com/science/article/pii/S277282692300024XCarbon dioxideElectrochemical CO2 reductionEthyleneCopperLife cycle assessmentCarbon footprint
spellingShingle Marco Löffelholz
Jonas Weidner
Jan Hartmann
Hesam Ostovari
Jens Osiewacz
Stefan Engbers
Barbara Ellendorff
João R.C. Junqueira
Katja Weichert
Niklas von der Assen
Wolfgang Schuhmann
Thomas Turek
Optimized scalable CuB catalyst with promising carbon footprint for the electrochemical CO2 reduction to ethylene
Sustainable Chemistry for Climate Action
Carbon dioxide
Electrochemical CO2 reduction
Ethylene
Copper
Life cycle assessment
Carbon footprint
title Optimized scalable CuB catalyst with promising carbon footprint for the electrochemical CO2 reduction to ethylene
title_full Optimized scalable CuB catalyst with promising carbon footprint for the electrochemical CO2 reduction to ethylene
title_fullStr Optimized scalable CuB catalyst with promising carbon footprint for the electrochemical CO2 reduction to ethylene
title_full_unstemmed Optimized scalable CuB catalyst with promising carbon footprint for the electrochemical CO2 reduction to ethylene
title_short Optimized scalable CuB catalyst with promising carbon footprint for the electrochemical CO2 reduction to ethylene
title_sort optimized scalable cub catalyst with promising carbon footprint for the electrochemical co2 reduction to ethylene
topic Carbon dioxide
Electrochemical CO2 reduction
Ethylene
Copper
Life cycle assessment
Carbon footprint
url http://www.sciencedirect.com/science/article/pii/S277282692300024X
work_keys_str_mv AT marcoloffelholz optimizedscalablecubcatalystwithpromisingcarbonfootprintfortheelectrochemicalco2reductiontoethylene
AT jonasweidner optimizedscalablecubcatalystwithpromisingcarbonfootprintfortheelectrochemicalco2reductiontoethylene
AT janhartmann optimizedscalablecubcatalystwithpromisingcarbonfootprintfortheelectrochemicalco2reductiontoethylene
AT hesamostovari optimizedscalablecubcatalystwithpromisingcarbonfootprintfortheelectrochemicalco2reductiontoethylene
AT jensosiewacz optimizedscalablecubcatalystwithpromisingcarbonfootprintfortheelectrochemicalco2reductiontoethylene
AT stefanengbers optimizedscalablecubcatalystwithpromisingcarbonfootprintfortheelectrochemicalco2reductiontoethylene
AT barbaraellendorff optimizedscalablecubcatalystwithpromisingcarbonfootprintfortheelectrochemicalco2reductiontoethylene
AT joaorcjunqueira optimizedscalablecubcatalystwithpromisingcarbonfootprintfortheelectrochemicalco2reductiontoethylene
AT katjaweichert optimizedscalablecubcatalystwithpromisingcarbonfootprintfortheelectrochemicalco2reductiontoethylene
AT niklasvonderassen optimizedscalablecubcatalystwithpromisingcarbonfootprintfortheelectrochemicalco2reductiontoethylene
AT wolfgangschuhmann optimizedscalablecubcatalystwithpromisingcarbonfootprintfortheelectrochemicalco2reductiontoethylene
AT thomasturek optimizedscalablecubcatalystwithpromisingcarbonfootprintfortheelectrochemicalco2reductiontoethylene