Evaluation of N-alkyl isatins and indoles as acetylcholinesterase and butyrylcholinesterase inhibitors

Two series of N-alkyl isatins and N-alkyl indoles varying in size of the alkyl group were synthesised and evaluated for inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Among the N-alkyl isatins 4a-j, the addition of the N-alkyl group improved inhibition potency towards AC...

Full description

Bibliographic Details
Main Authors: Kaitlyn N. Alcorn, Isabelle A. Oberhauser, Matthew D. Politeski, Todd J. Eckroat
Format: Article
Language:English
Published: Taylor & Francis Group 2024-12-01
Series:Journal of Enzyme Inhibition and Medicinal Chemistry
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/14756366.2023.2286935
Description
Summary:Two series of N-alkyl isatins and N-alkyl indoles varying in size of the alkyl group were synthesised and evaluated for inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Among the N-alkyl isatins 4a-j, the addition of the N-alkyl group improved inhibition potency towards AChE and BChE compared to isatin. Selectivity towards inhibition of BChE was observed, and the increase in size of the N-alkyl group positively correlated to improved inhibition potency. The most potent inhibitor for BChE was 4i (IC50 = 3.77 µM, 22-fold selectivity for BChE over AChE). N-alkyl indoles 5a-j showed similar inhibition of AChE, the most potent being 5g (IC50 = 35.0 µM), but 5a-j lost activity towards BChE. This suggests an important role of the 3-oxo group on isatin for BChE inhibition, and molecular docking of 4i with human BChE indicates a key hydrogen bond between this group and Ser198 and His438 of the BChE catalytic triad.
ISSN:1475-6366
1475-6374