Eigenvalue inequalities for the buckling problem of the drifting Laplacian of arbitrary order
In this paper, we investigate the buckling problem of the drifting Laplacian of arbitrary order on a bounded connected domain in complete smooth metric measure spaces (SMMSs) supporting a special function, and successfully obtain a general inequality for its eigenvalues. By applying this general ine...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2022-10-01
|
Series: | Advances in Nonlinear Analysis |
Subjects: | |
Online Access: | https://doi.org/10.1515/anona-2022-0278 |
_version_ | 1828214172571140096 |
---|---|
author | Du Feng Hou Lanbao Mao Jing Wu Chuanxi |
author_facet | Du Feng Hou Lanbao Mao Jing Wu Chuanxi |
author_sort | Du Feng |
collection | DOAJ |
description | In this paper, we investigate the buckling problem of the drifting Laplacian of arbitrary order on a bounded connected domain in complete smooth metric measure spaces (SMMSs) supporting a special function, and successfully obtain a general inequality for its eigenvalues. By applying this general inequality, if the complete SMMSs considered satisfy some curvature constraints, we can obtain a universal inequalities for eigenvalues of this buckling problem. |
first_indexed | 2024-04-12T15:01:28Z |
format | Article |
id | doaj.art-babdc10df4994476978c0199c799871b |
institution | Directory Open Access Journal |
issn | 2191-950X |
language | English |
last_indexed | 2024-04-12T15:01:28Z |
publishDate | 2022-10-01 |
publisher | De Gruyter |
record_format | Article |
series | Advances in Nonlinear Analysis |
spelling | doaj.art-babdc10df4994476978c0199c799871b2022-12-22T03:28:05ZengDe GruyterAdvances in Nonlinear Analysis2191-950X2022-10-0112129530810.1515/anona-2022-0278Eigenvalue inequalities for the buckling problem of the drifting Laplacian of arbitrary orderDu Feng0Hou Lanbao1Mao Jing2Wu Chuanxi3School of Mathematics and Physics Science, Jingchu University of Technology, Jingmen, 448000, ChinaSchool of Mathematics and Physics Science, Jingchu University of Technology, Jingmen, 448000, ChinaFaculty of Mathematics and Statistics, Key Laboratory of Applied Mathematics of Hubei Province, Hubei University, Wuhan 430062, ChinaFaculty of Mathematics and Statistics, Key Laboratory of Applied Mathematics of Hubei Province, Hubei University, Wuhan 430062, ChinaIn this paper, we investigate the buckling problem of the drifting Laplacian of arbitrary order on a bounded connected domain in complete smooth metric measure spaces (SMMSs) supporting a special function, and successfully obtain a general inequality for its eigenvalues. By applying this general inequality, if the complete SMMSs considered satisfy some curvature constraints, we can obtain a universal inequalities for eigenvalues of this buckling problem.https://doi.org/10.1515/anona-2022-0278eigenvaluesuniversal inequalitiesthe buckling problem of arbitrary orderthe poly-drifting laplacianweighted ricci curvature35p1553c2053c42 |
spellingShingle | Du Feng Hou Lanbao Mao Jing Wu Chuanxi Eigenvalue inequalities for the buckling problem of the drifting Laplacian of arbitrary order Advances in Nonlinear Analysis eigenvalues universal inequalities the buckling problem of arbitrary order the poly-drifting laplacian weighted ricci curvature 35p15 53c20 53c42 |
title | Eigenvalue inequalities for the buckling problem of the drifting Laplacian of arbitrary order |
title_full | Eigenvalue inequalities for the buckling problem of the drifting Laplacian of arbitrary order |
title_fullStr | Eigenvalue inequalities for the buckling problem of the drifting Laplacian of arbitrary order |
title_full_unstemmed | Eigenvalue inequalities for the buckling problem of the drifting Laplacian of arbitrary order |
title_short | Eigenvalue inequalities for the buckling problem of the drifting Laplacian of arbitrary order |
title_sort | eigenvalue inequalities for the buckling problem of the drifting laplacian of arbitrary order |
topic | eigenvalues universal inequalities the buckling problem of arbitrary order the poly-drifting laplacian weighted ricci curvature 35p15 53c20 53c42 |
url | https://doi.org/10.1515/anona-2022-0278 |
work_keys_str_mv | AT dufeng eigenvalueinequalitiesforthebucklingproblemofthedriftinglaplacianofarbitraryorder AT houlanbao eigenvalueinequalitiesforthebucklingproblemofthedriftinglaplacianofarbitraryorder AT maojing eigenvalueinequalitiesforthebucklingproblemofthedriftinglaplacianofarbitraryorder AT wuchuanxi eigenvalueinequalitiesforthebucklingproblemofthedriftinglaplacianofarbitraryorder |