MHD darcy-forchheimer nanofluid flow and entropy optimization in an odd-shaped enclosure filled with a (MWCNT-Fe3O4/water) using galerkin finite element analysis
Abstract MHD nanoliquid convective flow in an odd-shaped cavity filled with a multi-walled carbon nanotube-iron (II, III) oxide (MWCNT-Fe3O4) hybrid nanofluid is reported. The side walls are adiabatic, and the internal and external borders of the cavity are isothermally kept at high and low temperat...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2021-11-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-021-02047-y |
_version_ | 1818420795419918336 |
---|---|
author | Wael Al-Kouz Abderrahmane Aissa Aimad Koulali Wasim Jamshed Hazim Moria Kottakkaran Sooppy Nisar Abed Mourad Abdel-Haleem Abdel-Aty M. Motawi Khashan I. S. Yahia |
author_facet | Wael Al-Kouz Abderrahmane Aissa Aimad Koulali Wasim Jamshed Hazim Moria Kottakkaran Sooppy Nisar Abed Mourad Abdel-Haleem Abdel-Aty M. Motawi Khashan I. S. Yahia |
author_sort | Wael Al-Kouz |
collection | DOAJ |
description | Abstract MHD nanoliquid convective flow in an odd-shaped cavity filled with a multi-walled carbon nanotube-iron (II, III) oxide (MWCNT-Fe3O4) hybrid nanofluid is reported. The side walls are adiabatic, and the internal and external borders of the cavity are isothermally kept at high and low temperatures of Th and Tc, respectively. The governing equations obtained with the Boussinesq approximation are solved using Galerkin Finite Element Method (GFEM). Impact of Darcy number (Da), Hartmann number (Ha), Rayleigh number (Ra), solid volume fraction (ϕ), and Heated-wall length effect are presented. Outputs are illustrated in forms of streamlines, isotherms, and Nusselt number. The impact of multiple parameters namely Rayleigh number, Darcy number, on entropy generation rate was analyzed and discussed in post-processing under laminar and turbulent flow regimes. |
first_indexed | 2024-12-14T13:00:08Z |
format | Article |
id | doaj.art-bad60cff29b1458cbe84ce015b4b6599 |
institution | Directory Open Access Journal |
issn | 2045-2322 |
language | English |
last_indexed | 2024-12-14T13:00:08Z |
publishDate | 2021-11-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Scientific Reports |
spelling | doaj.art-bad60cff29b1458cbe84ce015b4b65992022-12-21T23:00:27ZengNature PortfolioScientific Reports2045-23222021-11-0111111510.1038/s41598-021-02047-yMHD darcy-forchheimer nanofluid flow and entropy optimization in an odd-shaped enclosure filled with a (MWCNT-Fe3O4/water) using galerkin finite element analysisWael Al-Kouz0Abderrahmane Aissa1Aimad Koulali2Wasim Jamshed3Hazim Moria4Kottakkaran Sooppy Nisar5Abed Mourad6Abdel-Haleem Abdel-Aty7M. Motawi Khashan8I. S. Yahia9Mechanical and Maintenance Engineering Department, School of Applied Technical Sciences, German Jordanian UniversityLaboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), Université Mustapha Stambouli de MascaraLaboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), Université Mustapha Stambouli de MascaraDepartment of Mathematics, Capital University of Science and Technology (CUST)Department of Mechanical Engineering Technology, Yanbu Industrial CollegeDepartment of Mathematics, College of Arts and Sciences, Prince Sattam Bin Abdulaziz UniversityLaboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), Université Mustapha Stambouli de MascaraDepartment of Physics, College of Sciences, University of BishaDepartment of Basic Sciences, Common First Year, King Saud UniversityAdvanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid UniversityAbstract MHD nanoliquid convective flow in an odd-shaped cavity filled with a multi-walled carbon nanotube-iron (II, III) oxide (MWCNT-Fe3O4) hybrid nanofluid is reported. The side walls are adiabatic, and the internal and external borders of the cavity are isothermally kept at high and low temperatures of Th and Tc, respectively. The governing equations obtained with the Boussinesq approximation are solved using Galerkin Finite Element Method (GFEM). Impact of Darcy number (Da), Hartmann number (Ha), Rayleigh number (Ra), solid volume fraction (ϕ), and Heated-wall length effect are presented. Outputs are illustrated in forms of streamlines, isotherms, and Nusselt number. The impact of multiple parameters namely Rayleigh number, Darcy number, on entropy generation rate was analyzed and discussed in post-processing under laminar and turbulent flow regimes.https://doi.org/10.1038/s41598-021-02047-y |
spellingShingle | Wael Al-Kouz Abderrahmane Aissa Aimad Koulali Wasim Jamshed Hazim Moria Kottakkaran Sooppy Nisar Abed Mourad Abdel-Haleem Abdel-Aty M. Motawi Khashan I. S. Yahia MHD darcy-forchheimer nanofluid flow and entropy optimization in an odd-shaped enclosure filled with a (MWCNT-Fe3O4/water) using galerkin finite element analysis Scientific Reports |
title | MHD darcy-forchheimer nanofluid flow and entropy optimization in an odd-shaped enclosure filled with a (MWCNT-Fe3O4/water) using galerkin finite element analysis |
title_full | MHD darcy-forchheimer nanofluid flow and entropy optimization in an odd-shaped enclosure filled with a (MWCNT-Fe3O4/water) using galerkin finite element analysis |
title_fullStr | MHD darcy-forchheimer nanofluid flow and entropy optimization in an odd-shaped enclosure filled with a (MWCNT-Fe3O4/water) using galerkin finite element analysis |
title_full_unstemmed | MHD darcy-forchheimer nanofluid flow and entropy optimization in an odd-shaped enclosure filled with a (MWCNT-Fe3O4/water) using galerkin finite element analysis |
title_short | MHD darcy-forchheimer nanofluid flow and entropy optimization in an odd-shaped enclosure filled with a (MWCNT-Fe3O4/water) using galerkin finite element analysis |
title_sort | mhd darcy forchheimer nanofluid flow and entropy optimization in an odd shaped enclosure filled with a mwcnt fe3o4 water using galerkin finite element analysis |
url | https://doi.org/10.1038/s41598-021-02047-y |
work_keys_str_mv | AT waelalkouz mhddarcyforchheimernanofluidflowandentropyoptimizationinanoddshapedenclosurefilledwithamwcntfe3o4waterusinggalerkinfiniteelementanalysis AT abderrahmaneaissa mhddarcyforchheimernanofluidflowandentropyoptimizationinanoddshapedenclosurefilledwithamwcntfe3o4waterusinggalerkinfiniteelementanalysis AT aimadkoulali mhddarcyforchheimernanofluidflowandentropyoptimizationinanoddshapedenclosurefilledwithamwcntfe3o4waterusinggalerkinfiniteelementanalysis AT wasimjamshed mhddarcyforchheimernanofluidflowandentropyoptimizationinanoddshapedenclosurefilledwithamwcntfe3o4waterusinggalerkinfiniteelementanalysis AT hazimmoria mhddarcyforchheimernanofluidflowandentropyoptimizationinanoddshapedenclosurefilledwithamwcntfe3o4waterusinggalerkinfiniteelementanalysis AT kottakkaransooppynisar mhddarcyforchheimernanofluidflowandentropyoptimizationinanoddshapedenclosurefilledwithamwcntfe3o4waterusinggalerkinfiniteelementanalysis AT abedmourad mhddarcyforchheimernanofluidflowandentropyoptimizationinanoddshapedenclosurefilledwithamwcntfe3o4waterusinggalerkinfiniteelementanalysis AT abdelhaleemabdelaty mhddarcyforchheimernanofluidflowandentropyoptimizationinanoddshapedenclosurefilledwithamwcntfe3o4waterusinggalerkinfiniteelementanalysis AT mmotawikhashan mhddarcyforchheimernanofluidflowandentropyoptimizationinanoddshapedenclosurefilledwithamwcntfe3o4waterusinggalerkinfiniteelementanalysis AT isyahia mhddarcyforchheimernanofluidflowandentropyoptimizationinanoddshapedenclosurefilledwithamwcntfe3o4waterusinggalerkinfiniteelementanalysis |