Growth estimates for the maximal term and central exponent of the derivative of a Dirichlet series
Let $A\in(-\infty,+\infty]$, $\Phi:[a,A)\to\mathbb{R}$ be a continuous function such that $x\sigma-\Phi(\sigma)\to-\infty$ as $\sigma\uparrow A$ for every $x\in\mathbb{R}$, $\widetilde{\Phi}(x)=\max\{x\sigma -\Phi(\sigma):\sigma\in [a,A)\}$ be the Young-conjugate function of $\Phi$, $\overline{\Phi}...
Main Authors: | S.I. Fedynyak, P.V. Filevych |
---|---|
Format: | Article |
Language: | English |
Published: |
Vasyl Stefanyk Precarpathian National University
2020-08-01
|
Series: | Karpatsʹkì Matematičnì Publìkacìï |
Subjects: | |
Online Access: | https://journals.pnu.edu.ua/index.php/cmp/article/view/4121 |
Similar Items
-
Relative Gol’dberg Order and Type of Multiple Entire Dirichlet Series in Terms of Coefficients and Exponents
by: Monalisa Middya
Published: (2021-09-01) -
REGULAR GROWTH OF DIRICHLET SERIES OF THE CLASS 𝐷(Φ) ON CURVES OF BOUNDED 𝐾-SLOPE
by: N. N. Aitkuzhina, et al.
Published: (2023-09-01) -
Modular forms and dirichlet series /
by: 362559 Ogg, Andrew
Published: (1969) -
Dirichlet series: Principles and methods
by: 316156 Mandelbrojt, Szolim
Published: (1972) -
Maximal exponent of the Lorentz cones
by: Aubrun, Guillaume, et al.
Published: (2024-11-01)