Summary: | Summary: Multiple sclerosis (MS) is a neurological disorder that strikes the central nervous system. Due to the complexity of this disease, healthcare sectors are increasingly in need of shared clinical decision-making tools to provide practitioners with insightful knowledge and information about MS. These tools ought to be comprehensible by both technical and non-technical healthcare audiences. To aid this cause, this literature review analyzes the state-of-the-art decision support systems (DSSs) in MS research with a special focus on model-driven decision-making processes. The review clusters common methodologies used to support the decision-making process in classifying, diagnosing, predicting, and treating MS. This work observes that the majority of the investigated DSSs rely on knowledge-based and machine learning (ML) approaches, so the utilization of ontology and ML in the MS domain is observed to extend the scope of this review. Finally, this review summarizes the state-of-the-art DSSs, discusses the methods that have commonalities, and addresses the future work of applying DSS technologies in the MS field. The Bigger Picture: Multiple sclerosis (MS) is a disorder that strikes the central nervous system of the human body. This article reviews state-of-the-art decision support systems (DSSs) in MS research, as recent studies have highlighted the importance of DSSs in the medical realm. However, the utilization of decision support systems for MS remains an open challenge. A special focus in this article is given to model-driven DSSs, which uses knowledge representation to simplify the complex process for decision makers. We find that most investigated studies use knowledge-based and machine learning approaches. Based on the literature review, we suggest some future work of applying DSSs in the MS domain. Potential future directions should focus on applying DSS technologies to understand the MS patterns, etiology, effects on the quality-of-life, and correlations with other disorders.
|