A Note on Incompressible Vector Fields

In this paper, we use incompressible vector fields for characterizing Killing vector fields. We show that on a compact Riemannian manifold, a nontrivial incompressible vector field has a certain lower bound on the integral of the Ricci curvature in the direction of the incompressible vector field if...

Full description

Bibliographic Details
Main Author: Nasser Bin Turki
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/8/1479
_version_ 1797583230268866560
author Nasser Bin Turki
author_facet Nasser Bin Turki
author_sort Nasser Bin Turki
collection DOAJ
description In this paper, we use incompressible vector fields for characterizing Killing vector fields. We show that on a compact Riemannian manifold, a nontrivial incompressible vector field has a certain lower bound on the integral of the Ricci curvature in the direction of the incompressible vector field if, and only if, the vector field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> is Killing. We also show that a nontrivial incompressible vector field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> on a compact Riemannian manifold is a Jacobi-type vector field if, and only if, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> is Killing. Finally, we show that a nontrivial incompressible vector field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> on a connected Riemannian manifold has a certain lower bound on the Ricci curvature in the direction of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula>, and if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> is also a geodesic vector field, it necessarily implies that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> is Killing.
first_indexed 2024-03-10T23:32:58Z
format Article
id doaj.art-bae24412fa344fc1bf4d5642dc3e5167
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T23:32:58Z
publishDate 2023-07-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-bae24412fa344fc1bf4d5642dc3e51672023-11-19T03:10:19ZengMDPI AGSymmetry2073-89942023-07-01158147910.3390/sym15081479A Note on Incompressible Vector FieldsNasser Bin Turki0Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi ArabiaIn this paper, we use incompressible vector fields for characterizing Killing vector fields. We show that on a compact Riemannian manifold, a nontrivial incompressible vector field has a certain lower bound on the integral of the Ricci curvature in the direction of the incompressible vector field if, and only if, the vector field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> is Killing. We also show that a nontrivial incompressible vector field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> on a compact Riemannian manifold is a Jacobi-type vector field if, and only if, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> is Killing. Finally, we show that a nontrivial incompressible vector field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> on a connected Riemannian manifold has a certain lower bound on the Ricci curvature in the direction of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula>, and if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> is also a geodesic vector field, it necessarily implies that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> is Killing.https://www.mdpi.com/2073-8994/15/8/1479incompressible vector fieldskilling vector fieldsRicci curvatureEuclidean space
spellingShingle Nasser Bin Turki
A Note on Incompressible Vector Fields
Symmetry
incompressible vector fields
killing vector fields
Ricci curvature
Euclidean space
title A Note on Incompressible Vector Fields
title_full A Note on Incompressible Vector Fields
title_fullStr A Note on Incompressible Vector Fields
title_full_unstemmed A Note on Incompressible Vector Fields
title_short A Note on Incompressible Vector Fields
title_sort note on incompressible vector fields
topic incompressible vector fields
killing vector fields
Ricci curvature
Euclidean space
url https://www.mdpi.com/2073-8994/15/8/1479
work_keys_str_mv AT nasserbinturki anoteonincompressiblevectorfields
AT nasserbinturki noteonincompressiblevectorfields