Topographic Anaglyphs from Detailed Digital Elevation Models Covering Inland and Seafloor for the Tectonic Geomorphology Studies in and around Yoron Island, Ryukyu Arc, Japan

Anaglyphs produced using a digital elevation model (DEM) are effective to identify the characteristic tectono–geomorphic features. The objective of this study is to reinvestigate the tectonic geomorphology and to present novel tectonic maps of the late Quaternary in and around the Yoron is...

Full description

Bibliographic Details
Main Authors: Hideaki Goto, Kohsaku Arai, Taichi Sato
Format: Article
Language:English
Published: MDPI AG 2018-09-01
Series:Geosciences
Subjects:
Online Access:http://www.mdpi.com/2076-3263/8/10/363
Description
Summary:Anaglyphs produced using a digital elevation model (DEM) are effective to identify the characteristic tectono–geomorphic features. The objective of this study is to reinvestigate the tectonic geomorphology and to present novel tectonic maps of the late Quaternary in and around the Yoron island based on the interpretation of extensive topographical anaglyphs along the map areas that cover the inland and seafloor. Vintage aerial photographs are used to produce the 3-m mesh inland digital surface model (DSM); further, the 0.6-s to 2-s-mesh seafloor DEM is processed using the cloud point data generated through previous surveys. Thus, we identify anticlinal deformation on both the Pleistocene marine terrace and the seafloor to the north of the island. The deformation axis extends in a line and is parallel to the general trend of the island shelf. The Tsujimiya fault cuts the marine terraces, which extend to the Yoron basin’s seafloor. If we assume that the horizontal compressive stress axis is perpendicular to the island shelf, these properties can easily explain the distribution and style of the active faults and deformation. This study presents an effective methodology to understand the island arc tectonics, especially in case of small isolated islands.
ISSN:2076-3263