Evolution of endoglucanase genes in subterranean and surface isopod crustaceans from Central Western Australia
Abstract Recent studies have identified a significant number of endogenous cellulase genes in various arthropods, including isopods, allowing them to process hydrocarbons efficiently as a food source. While this research has provided insight into underlying gene‐level processes in cellulose decompos...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2023-10-01
|
Series: | Ecology and Evolution |
Subjects: | |
Online Access: | https://doi.org/10.1002/ece3.10552 |
_version_ | 1797648386973761536 |
---|---|
author | Mohammad Javidkar Steven J. B. Cooper Nahid Shokri Bousjein William F. Humphreys Rachael A. King Andrew D. Austin |
author_facet | Mohammad Javidkar Steven J. B. Cooper Nahid Shokri Bousjein William F. Humphreys Rachael A. King Andrew D. Austin |
author_sort | Mohammad Javidkar |
collection | DOAJ |
description | Abstract Recent studies have identified a significant number of endogenous cellulase genes in various arthropods, including isopods, allowing them to process hydrocarbons efficiently as a food source. While this research has provided insight into underlying gene‐level processes in cellulose decomposition by arthropods, little is known about the existence and expression of cellulase genes in species from cave environments where carbohydrates are sparse. To investigate whether endogenous cellulase genes are maintained in subterranean species, we sequenced the transcriptomes of two subterranean paraplatyarthrid isopod species from calcrete (carbonate) aquifers of central Western Australia and a related surface isopod species. Seven protein‐coding open‐reading frames associated with endoglucanase genes were identified in all species. Orthology inference analyses, using a wide range of cellulase sequences from available databases, supported the endogenous origin of the putative endoglucanase genes. Selection analyses revealed that these genes are primarily subject to purifying selection in most of the sites for both surface and subterranean isopod species, indicating that they are likely to encode functional peptides. Furthermore, evolutionary branch models supported the hypothesis of an adaptive shift in selective pressure acting on the subterranean lineages compared with the ancestral lineage and surface species. Branch‐site models also revealed a few amino acid sites on the subterranean branches to be under positive selection, suggesting the acquisition of novel adaptations to the subterranean environments. These findings also imply that hydrocarbons exist in subsurface aquifers, albeit at reduced levels, and have been utilized by subterranean isopods as a source of energy for millions of years. |
first_indexed | 2024-03-11T15:30:24Z |
format | Article |
id | doaj.art-baf2adb8f8a045bb911aba6526400999 |
institution | Directory Open Access Journal |
issn | 2045-7758 |
language | English |
last_indexed | 2024-03-11T15:30:24Z |
publishDate | 2023-10-01 |
publisher | Wiley |
record_format | Article |
series | Ecology and Evolution |
spelling | doaj.art-baf2adb8f8a045bb911aba65264009992023-10-27T04:40:51ZengWileyEcology and Evolution2045-77582023-10-011310n/an/a10.1002/ece3.10552Evolution of endoglucanase genes in subterranean and surface isopod crustaceans from Central Western AustraliaMohammad Javidkar0Steven J. B. Cooper1Nahid Shokri Bousjein2William F. Humphreys3Rachael A. King4Andrew D. Austin5Department of Ecology and Evolutionary Biology, School of Biological Sciences, and The Environment Institute University of Adelaide Adelaide South Australia AustraliaDepartment of Ecology and Evolutionary Biology, School of Biological Sciences, and The Environment Institute University of Adelaide Adelaide South Australia AustraliaFaculty of Biological Sciences Flinders University Bedford Park South Australia AustraliaWestern Australian Museum Welshpool Western Australia AustraliaDepartment of Ecology and Evolutionary Biology, School of Biological Sciences, and The Environment Institute University of Adelaide Adelaide South Australia AustraliaDepartment of Ecology and Evolutionary Biology, School of Biological Sciences, and The Environment Institute University of Adelaide Adelaide South Australia AustraliaAbstract Recent studies have identified a significant number of endogenous cellulase genes in various arthropods, including isopods, allowing them to process hydrocarbons efficiently as a food source. While this research has provided insight into underlying gene‐level processes in cellulose decomposition by arthropods, little is known about the existence and expression of cellulase genes in species from cave environments where carbohydrates are sparse. To investigate whether endogenous cellulase genes are maintained in subterranean species, we sequenced the transcriptomes of two subterranean paraplatyarthrid isopod species from calcrete (carbonate) aquifers of central Western Australia and a related surface isopod species. Seven protein‐coding open‐reading frames associated with endoglucanase genes were identified in all species. Orthology inference analyses, using a wide range of cellulase sequences from available databases, supported the endogenous origin of the putative endoglucanase genes. Selection analyses revealed that these genes are primarily subject to purifying selection in most of the sites for both surface and subterranean isopod species, indicating that they are likely to encode functional peptides. Furthermore, evolutionary branch models supported the hypothesis of an adaptive shift in selective pressure acting on the subterranean lineages compared with the ancestral lineage and surface species. Branch‐site models also revealed a few amino acid sites on the subterranean branches to be under positive selection, suggesting the acquisition of novel adaptations to the subterranean environments. These findings also imply that hydrocarbons exist in subsurface aquifers, albeit at reduced levels, and have been utilized by subterranean isopods as a source of energy for millions of years.https://doi.org/10.1002/ece3.10552calcrete aquiferscarbohydrateslignocelluloseoniscidea |
spellingShingle | Mohammad Javidkar Steven J. B. Cooper Nahid Shokri Bousjein William F. Humphreys Rachael A. King Andrew D. Austin Evolution of endoglucanase genes in subterranean and surface isopod crustaceans from Central Western Australia Ecology and Evolution calcrete aquifers carbohydrates lignocellulose oniscidea |
title | Evolution of endoglucanase genes in subterranean and surface isopod crustaceans from Central Western Australia |
title_full | Evolution of endoglucanase genes in subterranean and surface isopod crustaceans from Central Western Australia |
title_fullStr | Evolution of endoglucanase genes in subterranean and surface isopod crustaceans from Central Western Australia |
title_full_unstemmed | Evolution of endoglucanase genes in subterranean and surface isopod crustaceans from Central Western Australia |
title_short | Evolution of endoglucanase genes in subterranean and surface isopod crustaceans from Central Western Australia |
title_sort | evolution of endoglucanase genes in subterranean and surface isopod crustaceans from central western australia |
topic | calcrete aquifers carbohydrates lignocellulose oniscidea |
url | https://doi.org/10.1002/ece3.10552 |
work_keys_str_mv | AT mohammadjavidkar evolutionofendoglucanasegenesinsubterraneanandsurfaceisopodcrustaceansfromcentralwesternaustralia AT stevenjbcooper evolutionofendoglucanasegenesinsubterraneanandsurfaceisopodcrustaceansfromcentralwesternaustralia AT nahidshokribousjein evolutionofendoglucanasegenesinsubterraneanandsurfaceisopodcrustaceansfromcentralwesternaustralia AT williamfhumphreys evolutionofendoglucanasegenesinsubterraneanandsurfaceisopodcrustaceansfromcentralwesternaustralia AT rachaelaking evolutionofendoglucanasegenesinsubterraneanandsurfaceisopodcrustaceansfromcentralwesternaustralia AT andrewdaustin evolutionofendoglucanasegenesinsubterraneanandsurfaceisopodcrustaceansfromcentralwesternaustralia |