On Invariant Subspaces for the Shift Operator

In this paper, we improve two known invariant subspace theorems. More specifically, we show that a closed linear subspace <i>M</i> in the Hardy space <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>H</mi> <mi&g...

Full description

Bibliographic Details
Main Author: Junfeng Liu
Format: Article
Language:English
Published: MDPI AG 2019-06-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/11/6/743
_version_ 1798006055579418624
author Junfeng Liu
author_facet Junfeng Liu
author_sort Junfeng Liu
collection DOAJ
description In this paper, we improve two known invariant subspace theorems. More specifically, we show that a closed linear subspace <i>M</i> in the Hardy space <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>H</mi> <mi>p</mi> </msup> <mrow> <mo stretchy="false">(</mo> <mi mathvariant="double-struck">D</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#8804;</mo> <mi>p</mi> <mo>&lt;</mo> <mo>&#8734;</mo> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> is invariant under the shift operator <inline-formula> <math display="inline"> <semantics> <msub> <mi>M</mi> <mi>z</mi> </msub> </semantics> </math> </inline-formula> on <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>H</mi> <mi>p</mi> </msup> <mrow> <mo stretchy="false">(</mo> <mi>D</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> if and only if it is hyperinvariant under <inline-formula> <math display="inline"> <semantics> <msub> <mi>M</mi> <mi>z</mi> </msub> </semantics> </math> </inline-formula>, and that a closed linear subspace <i>M</i> in the Lebesgue space <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>L</mi> <mn>2</mn> </msup> <mrow> <mo stretchy="false">(</mo> <mo>&#8706;</mo> <mi mathvariant="double-struck">D</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> is reducing under the shift operator <inline-formula> <math display="inline"> <semantics> <msub> <mi>M</mi> <msup> <mi>e</mi> <mrow> <mi>i</mi> <mi>&#952;</mi> </mrow> </msup> </msub> </semantics> </math> </inline-formula> on <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>L</mi> <mn>2</mn> </msup> <mrow> <mo stretchy="false">(</mo> <mo>&#8706;</mo> <mi mathvariant="double-struck">D</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> if and only if it is hyperinvariant under <inline-formula> <math display="inline"> <semantics> <msub> <mi>M</mi> <msup> <mi>e</mi> <mrow> <mi>i</mi> <mi>&#952;</mi> </mrow> </msup> </msub> </semantics> </math> </inline-formula>. At the same time, we show that there are two large classes of invariant subspaces for <inline-formula> <math display="inline"> <semantics> <msub> <mi>M</mi> <msup> <mi>e</mi> <mrow> <mi>i</mi> <mi>&#952;</mi> </mrow> </msup> </msub> </semantics> </math> </inline-formula> that are not hyperinvariant subspaces for <inline-formula> <math display="inline"> <semantics> <msub> <mi>M</mi> <msup> <mi>e</mi> <mrow> <mi>i</mi> <mi>&#952;</mi> </mrow> </msup> </msub> </semantics> </math> </inline-formula> and are also not reducing subspaces for <inline-formula> <math display="inline"> <semantics> <msub> <mi>M</mi> <msup> <mi>e</mi> <mrow> <mi>i</mi> <mi>&#952;</mi> </mrow> </msup> </msub> </semantics> </math> </inline-formula>. Moreover, we still show that there is a large class of hyperinvariant subspaces for <inline-formula> <math display="inline"> <semantics> <msub> <mi>M</mi> <mi>z</mi> </msub> </semantics> </math> </inline-formula> that are not reducing subspaces for <inline-formula> <math display="inline"> <semantics> <msub> <mi>M</mi> <mi>z</mi> </msub> </semantics> </math> </inline-formula>. Furthermore, we gave two new versions of the formula of the reproducing function in the Hardy space <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>H</mi> <mn>2</mn> </msup> <mrow> <mo stretchy="false">(</mo> <mi mathvariant="double-struck">D</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, which are the analogue of the formula of the reproducing function in the Bergman space <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>A</mi> <mn>2</mn> </msup> <mrow> <mo stretchy="false">(</mo> <mi mathvariant="double-struck">D</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>. In addition, the conclusions in this paper are interesting now, or later if they are written into the literature of invariant subspaces and function spaces.
first_indexed 2024-04-11T12:49:20Z
format Article
id doaj.art-baf36af847ff455ba90026f607283c6d
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-04-11T12:49:20Z
publishDate 2019-06-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-baf36af847ff455ba90026f607283c6d2022-12-22T04:23:15ZengMDPI AGSymmetry2073-89942019-06-0111674310.3390/sym11060743sym11060743On Invariant Subspaces for the Shift OperatorJunfeng Liu0Faculty of Information Technology, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, ChinaIn this paper, we improve two known invariant subspace theorems. More specifically, we show that a closed linear subspace <i>M</i> in the Hardy space <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>H</mi> <mi>p</mi> </msup> <mrow> <mo stretchy="false">(</mo> <mi mathvariant="double-struck">D</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#8804;</mo> <mi>p</mi> <mo>&lt;</mo> <mo>&#8734;</mo> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> is invariant under the shift operator <inline-formula> <math display="inline"> <semantics> <msub> <mi>M</mi> <mi>z</mi> </msub> </semantics> </math> </inline-formula> on <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>H</mi> <mi>p</mi> </msup> <mrow> <mo stretchy="false">(</mo> <mi>D</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> if and only if it is hyperinvariant under <inline-formula> <math display="inline"> <semantics> <msub> <mi>M</mi> <mi>z</mi> </msub> </semantics> </math> </inline-formula>, and that a closed linear subspace <i>M</i> in the Lebesgue space <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>L</mi> <mn>2</mn> </msup> <mrow> <mo stretchy="false">(</mo> <mo>&#8706;</mo> <mi mathvariant="double-struck">D</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> is reducing under the shift operator <inline-formula> <math display="inline"> <semantics> <msub> <mi>M</mi> <msup> <mi>e</mi> <mrow> <mi>i</mi> <mi>&#952;</mi> </mrow> </msup> </msub> </semantics> </math> </inline-formula> on <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>L</mi> <mn>2</mn> </msup> <mrow> <mo stretchy="false">(</mo> <mo>&#8706;</mo> <mi mathvariant="double-struck">D</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> if and only if it is hyperinvariant under <inline-formula> <math display="inline"> <semantics> <msub> <mi>M</mi> <msup> <mi>e</mi> <mrow> <mi>i</mi> <mi>&#952;</mi> </mrow> </msup> </msub> </semantics> </math> </inline-formula>. At the same time, we show that there are two large classes of invariant subspaces for <inline-formula> <math display="inline"> <semantics> <msub> <mi>M</mi> <msup> <mi>e</mi> <mrow> <mi>i</mi> <mi>&#952;</mi> </mrow> </msup> </msub> </semantics> </math> </inline-formula> that are not hyperinvariant subspaces for <inline-formula> <math display="inline"> <semantics> <msub> <mi>M</mi> <msup> <mi>e</mi> <mrow> <mi>i</mi> <mi>&#952;</mi> </mrow> </msup> </msub> </semantics> </math> </inline-formula> and are also not reducing subspaces for <inline-formula> <math display="inline"> <semantics> <msub> <mi>M</mi> <msup> <mi>e</mi> <mrow> <mi>i</mi> <mi>&#952;</mi> </mrow> </msup> </msub> </semantics> </math> </inline-formula>. Moreover, we still show that there is a large class of hyperinvariant subspaces for <inline-formula> <math display="inline"> <semantics> <msub> <mi>M</mi> <mi>z</mi> </msub> </semantics> </math> </inline-formula> that are not reducing subspaces for <inline-formula> <math display="inline"> <semantics> <msub> <mi>M</mi> <mi>z</mi> </msub> </semantics> </math> </inline-formula>. Furthermore, we gave two new versions of the formula of the reproducing function in the Hardy space <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>H</mi> <mn>2</mn> </msup> <mrow> <mo stretchy="false">(</mo> <mi mathvariant="double-struck">D</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, which are the analogue of the formula of the reproducing function in the Bergman space <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>A</mi> <mn>2</mn> </msup> <mrow> <mo stretchy="false">(</mo> <mi mathvariant="double-struck">D</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>. In addition, the conclusions in this paper are interesting now, or later if they are written into the literature of invariant subspaces and function spaces.https://www.mdpi.com/2073-8994/11/6/743invariant subspacehyperinvariant subspacereducing subspaceshift operatorhardy spacelebesgue spaceBergman space
spellingShingle Junfeng Liu
On Invariant Subspaces for the Shift Operator
Symmetry
invariant subspace
hyperinvariant subspace
reducing subspace
shift operator
hardy space
lebesgue space
Bergman space
title On Invariant Subspaces for the Shift Operator
title_full On Invariant Subspaces for the Shift Operator
title_fullStr On Invariant Subspaces for the Shift Operator
title_full_unstemmed On Invariant Subspaces for the Shift Operator
title_short On Invariant Subspaces for the Shift Operator
title_sort on invariant subspaces for the shift operator
topic invariant subspace
hyperinvariant subspace
reducing subspace
shift operator
hardy space
lebesgue space
Bergman space
url https://www.mdpi.com/2073-8994/11/6/743
work_keys_str_mv AT junfengliu oninvariantsubspacesfortheshiftoperator