Integrative Clinical, Molecular, and Computational Analysis Identify Novel Biomarkers and Differential Profiles of Anti-TNF Response in Rheumatoid Arthritis

Background: This prospective multicenter study developed an integrative clinical and molecular longitudinal study in Rheumatoid Arthritis (RA) patients to explore changes in serologic parameters following anti-TNF therapy (TNF inhibitors, TNFi) and built on machine-learning algorithms aimed at the p...

Full description

Bibliographic Details
Main Authors: Maria Luque-Tévar, Carlos Perez-Sanchez, Alejandra Mª Patiño-Trives, Nuria Barbarroja, Ivan Arias de la Rosa, Mª Carmen Abalos-Aguilera, Juan Antonio Marin-Sanz, Desiree Ruiz-Vilchez, Rafaela Ortega-Castro, Pilar Font, Clementina Lopez-Medina, Montserrat Romero-Gomez, Carlos Rodriguez-Escalera, Jose Perez-Venegas, Mª Dolores Ruiz-Montesinos, Carmen Dominguez, Carmen Romero-Barco, Antonio Fernandez-Nebro, Natalia Mena-Vazquez, Jose Luis Marenco, Julia Uceda-Montañez, Mª Dolores Toledo-Coello, M. Angeles Aguirre, Alejandro Escudero-Contreras, Eduardo Collantes-Estevez, Chary Lopez-Pedrera
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-03-01
Series:Frontiers in Immunology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fimmu.2021.631662/full
_version_ 1818724647609303040
author Maria Luque-Tévar
Carlos Perez-Sanchez
Alejandra Mª Patiño-Trives
Nuria Barbarroja
Ivan Arias de la Rosa
Mª Carmen Abalos-Aguilera
Juan Antonio Marin-Sanz
Desiree Ruiz-Vilchez
Rafaela Ortega-Castro
Pilar Font
Clementina Lopez-Medina
Montserrat Romero-Gomez
Carlos Rodriguez-Escalera
Jose Perez-Venegas
Mª Dolores Ruiz-Montesinos
Carmen Dominguez
Carmen Romero-Barco
Antonio Fernandez-Nebro
Natalia Mena-Vazquez
Jose Luis Marenco
Julia Uceda-Montañez
Mª Dolores Toledo-Coello
M. Angeles Aguirre
Alejandro Escudero-Contreras
Eduardo Collantes-Estevez
Chary Lopez-Pedrera
author_facet Maria Luque-Tévar
Carlos Perez-Sanchez
Alejandra Mª Patiño-Trives
Nuria Barbarroja
Ivan Arias de la Rosa
Mª Carmen Abalos-Aguilera
Juan Antonio Marin-Sanz
Desiree Ruiz-Vilchez
Rafaela Ortega-Castro
Pilar Font
Clementina Lopez-Medina
Montserrat Romero-Gomez
Carlos Rodriguez-Escalera
Jose Perez-Venegas
Mª Dolores Ruiz-Montesinos
Carmen Dominguez
Carmen Romero-Barco
Antonio Fernandez-Nebro
Natalia Mena-Vazquez
Jose Luis Marenco
Julia Uceda-Montañez
Mª Dolores Toledo-Coello
M. Angeles Aguirre
Alejandro Escudero-Contreras
Eduardo Collantes-Estevez
Chary Lopez-Pedrera
author_sort Maria Luque-Tévar
collection DOAJ
description Background: This prospective multicenter study developed an integrative clinical and molecular longitudinal study in Rheumatoid Arthritis (RA) patients to explore changes in serologic parameters following anti-TNF therapy (TNF inhibitors, TNFi) and built on machine-learning algorithms aimed at the prediction of TNFi response, based on clinical and molecular profiles of RA patients.Methods: A total of 104 RA patients from two independent cohorts undergoing TNFi and 29 healthy donors (HD) were enrolled for the discovery and validation of prediction biomarkers. Serum samples were obtained at baseline and 6 months after treatment, and therapeutic efficacy was evaluated. Serum inflammatory profile, oxidative stress markers and NETosis-derived bioproducts were quantified and miRNomes were recognized by next-generation sequencing. Then, clinical and molecular changes induced by TNFi were delineated. Clinical and molecular signatures predictors of clinical response were assessed with supervised machine learning methods, using regularized logistic regressions.Results: Altered inflammatory, oxidative and NETosis-derived biomolecules were found in RA patients vs. HD, closely interconnected and associated with specific miRNA profiles. This altered molecular profile allowed the unsupervised division of three clusters of RA patients, showing distinctive clinical phenotypes, further linked to the TNFi effectiveness. Moreover, TNFi treatment reversed the molecular alterations in parallel to the clinical outcome. Machine-learning algorithms in the discovery cohort identified both, clinical and molecular signatures as potential predictors of response to TNFi treatment with high accuracy, which was further increased when both features were integrated in a mixed model (AUC: 0.91). These results were confirmed in the validation cohort.Conclusions: Our overall data suggest that: 1. RA patients undergoing anti-TNF-therapy conform distinctive clusters based on altered molecular profiles, which are directly linked to their clinical status at baseline. 2. Clinical effectiveness of anti-TNF therapy was divergent among these molecular clusters and associated with a specific modulation of the inflammatory response, the reestablishment of the altered oxidative status, the reduction of NETosis, and the reversion of related altered miRNAs. 3. The integrative analysis of the clinical and molecular profiles using machine learning allows the identification of novel signatures as potential predictors of therapeutic response to TNFi therapy.
first_indexed 2024-12-17T21:29:45Z
format Article
id doaj.art-bb017e91ba5d4f1ebf7fe17dc8217b1e
institution Directory Open Access Journal
issn 1664-3224
language English
last_indexed 2024-12-17T21:29:45Z
publishDate 2021-03-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Immunology
spelling doaj.art-bb017e91ba5d4f1ebf7fe17dc8217b1e2022-12-21T21:31:56ZengFrontiers Media S.A.Frontiers in Immunology1664-32242021-03-011210.3389/fimmu.2021.631662631662Integrative Clinical, Molecular, and Computational Analysis Identify Novel Biomarkers and Differential Profiles of Anti-TNF Response in Rheumatoid ArthritisMaria Luque-Tévar0Carlos Perez-Sanchez1Alejandra Mª Patiño-Trives2Nuria Barbarroja3Ivan Arias de la Rosa4Mª Carmen Abalos-Aguilera5Juan Antonio Marin-Sanz6Desiree Ruiz-Vilchez7Rafaela Ortega-Castro8Pilar Font9Clementina Lopez-MedinaMontserrat Romero-Gomez10Carlos Rodriguez-Escalera11Jose Perez-Venegas12Mª Dolores Ruiz-Montesinos13Carmen Dominguez14Carmen Romero-Barco15Antonio Fernandez-Nebro16Natalia Mena-Vazquez17Jose Luis Marenco18Julia Uceda-Montañez19Mª Dolores Toledo-Coello20M. Angeles Aguirre21Alejandro Escudero-Contreras22Eduardo Collantes-Estevez23Chary Lopez-Pedrera24Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, SpainInstituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, SpainInstituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, SpainInstituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, SpainInstituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, SpainInstituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, SpainInstituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, SpainInstituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, SpainInstituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, SpainInstituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, SpainInstituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, SpainHospital Universitario de Jaen, Jaén, SpainHospital Universitario Virgen Macarena, Sevilla, SpainHospital Universitario Virgen Macarena, Sevilla, SpainHospital Universitario Virgen Macarena, Sevilla, SpainHospital Clínico Universitario, Malaga, SpainHospital Regional Universitario de Malaga, Malaga, SpainHospital Regional Universitario de Malaga, Malaga, SpainHospital Universitario Virgen de Valme, Sevilla, SpainHospital Universitario Virgen de Valme, Sevilla, SpainHospital Universitario de Jerez de la Frontera, Cádiz, SpainInstituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, SpainInstituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, SpainInstituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, SpainInstituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, SpainBackground: This prospective multicenter study developed an integrative clinical and molecular longitudinal study in Rheumatoid Arthritis (RA) patients to explore changes in serologic parameters following anti-TNF therapy (TNF inhibitors, TNFi) and built on machine-learning algorithms aimed at the prediction of TNFi response, based on clinical and molecular profiles of RA patients.Methods: A total of 104 RA patients from two independent cohorts undergoing TNFi and 29 healthy donors (HD) were enrolled for the discovery and validation of prediction biomarkers. Serum samples were obtained at baseline and 6 months after treatment, and therapeutic efficacy was evaluated. Serum inflammatory profile, oxidative stress markers and NETosis-derived bioproducts were quantified and miRNomes were recognized by next-generation sequencing. Then, clinical and molecular changes induced by TNFi were delineated. Clinical and molecular signatures predictors of clinical response were assessed with supervised machine learning methods, using regularized logistic regressions.Results: Altered inflammatory, oxidative and NETosis-derived biomolecules were found in RA patients vs. HD, closely interconnected and associated with specific miRNA profiles. This altered molecular profile allowed the unsupervised division of three clusters of RA patients, showing distinctive clinical phenotypes, further linked to the TNFi effectiveness. Moreover, TNFi treatment reversed the molecular alterations in parallel to the clinical outcome. Machine-learning algorithms in the discovery cohort identified both, clinical and molecular signatures as potential predictors of response to TNFi treatment with high accuracy, which was further increased when both features were integrated in a mixed model (AUC: 0.91). These results were confirmed in the validation cohort.Conclusions: Our overall data suggest that: 1. RA patients undergoing anti-TNF-therapy conform distinctive clusters based on altered molecular profiles, which are directly linked to their clinical status at baseline. 2. Clinical effectiveness of anti-TNF therapy was divergent among these molecular clusters and associated with a specific modulation of the inflammatory response, the reestablishment of the altered oxidative status, the reduction of NETosis, and the reversion of related altered miRNAs. 3. The integrative analysis of the clinical and molecular profiles using machine learning allows the identification of novel signatures as potential predictors of therapeutic response to TNFi therapy.https://www.frontiersin.org/articles/10.3389/fimmu.2021.631662/fullrheumatoid arthritisanti-TNF agentsinflammationNEtosismicroRNAsmachine learning
spellingShingle Maria Luque-Tévar
Carlos Perez-Sanchez
Alejandra Mª Patiño-Trives
Nuria Barbarroja
Ivan Arias de la Rosa
Mª Carmen Abalos-Aguilera
Juan Antonio Marin-Sanz
Desiree Ruiz-Vilchez
Rafaela Ortega-Castro
Pilar Font
Clementina Lopez-Medina
Montserrat Romero-Gomez
Carlos Rodriguez-Escalera
Jose Perez-Venegas
Mª Dolores Ruiz-Montesinos
Carmen Dominguez
Carmen Romero-Barco
Antonio Fernandez-Nebro
Natalia Mena-Vazquez
Jose Luis Marenco
Julia Uceda-Montañez
Mª Dolores Toledo-Coello
M. Angeles Aguirre
Alejandro Escudero-Contreras
Eduardo Collantes-Estevez
Chary Lopez-Pedrera
Integrative Clinical, Molecular, and Computational Analysis Identify Novel Biomarkers and Differential Profiles of Anti-TNF Response in Rheumatoid Arthritis
Frontiers in Immunology
rheumatoid arthritis
anti-TNF agents
inflammation
NEtosis
microRNAs
machine learning
title Integrative Clinical, Molecular, and Computational Analysis Identify Novel Biomarkers and Differential Profiles of Anti-TNF Response in Rheumatoid Arthritis
title_full Integrative Clinical, Molecular, and Computational Analysis Identify Novel Biomarkers and Differential Profiles of Anti-TNF Response in Rheumatoid Arthritis
title_fullStr Integrative Clinical, Molecular, and Computational Analysis Identify Novel Biomarkers and Differential Profiles of Anti-TNF Response in Rheumatoid Arthritis
title_full_unstemmed Integrative Clinical, Molecular, and Computational Analysis Identify Novel Biomarkers and Differential Profiles of Anti-TNF Response in Rheumatoid Arthritis
title_short Integrative Clinical, Molecular, and Computational Analysis Identify Novel Biomarkers and Differential Profiles of Anti-TNF Response in Rheumatoid Arthritis
title_sort integrative clinical molecular and computational analysis identify novel biomarkers and differential profiles of anti tnf response in rheumatoid arthritis
topic rheumatoid arthritis
anti-TNF agents
inflammation
NEtosis
microRNAs
machine learning
url https://www.frontiersin.org/articles/10.3389/fimmu.2021.631662/full
work_keys_str_mv AT marialuquetevar integrativeclinicalmolecularandcomputationalanalysisidentifynovelbiomarkersanddifferentialprofilesofantitnfresponseinrheumatoidarthritis
AT carlosperezsanchez integrativeclinicalmolecularandcomputationalanalysisidentifynovelbiomarkersanddifferentialprofilesofantitnfresponseinrheumatoidarthritis
AT alejandramapatinotrives integrativeclinicalmolecularandcomputationalanalysisidentifynovelbiomarkersanddifferentialprofilesofantitnfresponseinrheumatoidarthritis
AT nuriabarbarroja integrativeclinicalmolecularandcomputationalanalysisidentifynovelbiomarkersanddifferentialprofilesofantitnfresponseinrheumatoidarthritis
AT ivanariasdelarosa integrativeclinicalmolecularandcomputationalanalysisidentifynovelbiomarkersanddifferentialprofilesofantitnfresponseinrheumatoidarthritis
AT macarmenabalosaguilera integrativeclinicalmolecularandcomputationalanalysisidentifynovelbiomarkersanddifferentialprofilesofantitnfresponseinrheumatoidarthritis
AT juanantoniomarinsanz integrativeclinicalmolecularandcomputationalanalysisidentifynovelbiomarkersanddifferentialprofilesofantitnfresponseinrheumatoidarthritis
AT desireeruizvilchez integrativeclinicalmolecularandcomputationalanalysisidentifynovelbiomarkersanddifferentialprofilesofantitnfresponseinrheumatoidarthritis
AT rafaelaortegacastro integrativeclinicalmolecularandcomputationalanalysisidentifynovelbiomarkersanddifferentialprofilesofantitnfresponseinrheumatoidarthritis
AT pilarfont integrativeclinicalmolecularandcomputationalanalysisidentifynovelbiomarkersanddifferentialprofilesofantitnfresponseinrheumatoidarthritis
AT clementinalopezmedina integrativeclinicalmolecularandcomputationalanalysisidentifynovelbiomarkersanddifferentialprofilesofantitnfresponseinrheumatoidarthritis
AT montserratromerogomez integrativeclinicalmolecularandcomputationalanalysisidentifynovelbiomarkersanddifferentialprofilesofantitnfresponseinrheumatoidarthritis
AT carlosrodriguezescalera integrativeclinicalmolecularandcomputationalanalysisidentifynovelbiomarkersanddifferentialprofilesofantitnfresponseinrheumatoidarthritis
AT joseperezvenegas integrativeclinicalmolecularandcomputationalanalysisidentifynovelbiomarkersanddifferentialprofilesofantitnfresponseinrheumatoidarthritis
AT madoloresruizmontesinos integrativeclinicalmolecularandcomputationalanalysisidentifynovelbiomarkersanddifferentialprofilesofantitnfresponseinrheumatoidarthritis
AT carmendominguez integrativeclinicalmolecularandcomputationalanalysisidentifynovelbiomarkersanddifferentialprofilesofantitnfresponseinrheumatoidarthritis
AT carmenromerobarco integrativeclinicalmolecularandcomputationalanalysisidentifynovelbiomarkersanddifferentialprofilesofantitnfresponseinrheumatoidarthritis
AT antoniofernandeznebro integrativeclinicalmolecularandcomputationalanalysisidentifynovelbiomarkersanddifferentialprofilesofantitnfresponseinrheumatoidarthritis
AT nataliamenavazquez integrativeclinicalmolecularandcomputationalanalysisidentifynovelbiomarkersanddifferentialprofilesofantitnfresponseinrheumatoidarthritis
AT joseluismarenco integrativeclinicalmolecularandcomputationalanalysisidentifynovelbiomarkersanddifferentialprofilesofantitnfresponseinrheumatoidarthritis
AT juliaucedamontanez integrativeclinicalmolecularandcomputationalanalysisidentifynovelbiomarkersanddifferentialprofilesofantitnfresponseinrheumatoidarthritis
AT madolorestoledocoello integrativeclinicalmolecularandcomputationalanalysisidentifynovelbiomarkersanddifferentialprofilesofantitnfresponseinrheumatoidarthritis
AT mangelesaguirre integrativeclinicalmolecularandcomputationalanalysisidentifynovelbiomarkersanddifferentialprofilesofantitnfresponseinrheumatoidarthritis
AT alejandroescuderocontreras integrativeclinicalmolecularandcomputationalanalysisidentifynovelbiomarkersanddifferentialprofilesofantitnfresponseinrheumatoidarthritis
AT eduardocollantesestevez integrativeclinicalmolecularandcomputationalanalysisidentifynovelbiomarkersanddifferentialprofilesofantitnfresponseinrheumatoidarthritis
AT charylopezpedrera integrativeclinicalmolecularandcomputationalanalysisidentifynovelbiomarkersanddifferentialprofilesofantitnfresponseinrheumatoidarthritis