Teneurin-3 Specifies Morphological and Functional Connectivity of Retinal Ganglion Cells in the Vertebrate Visual System
A striking feature of the CNS is the precise wiring of its neuronal connections. During vertebrate visual system development, different subtypes of retinal ganglion cells (RGCs) form specific connections with their corresponding synaptic partners. However, the underlying molecular mechanisms remain...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2013-11-01
|
Series: | Cell Reports |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2211124713005688 |
_version_ | 1818230999975198720 |
---|---|
author | Paride Antinucci Nikolas Nikolaou Martin P. Meyer Robert Hindges |
author_facet | Paride Antinucci Nikolas Nikolaou Martin P. Meyer Robert Hindges |
author_sort | Paride Antinucci |
collection | DOAJ |
description | A striking feature of the CNS is the precise wiring of its neuronal connections. During vertebrate visual system development, different subtypes of retinal ganglion cells (RGCs) form specific connections with their corresponding synaptic partners. However, the underlying molecular mechanisms remain to be fully elucidated. Here, we report that the cell-adhesive transmembrane protein Teneurin-3 (Tenm3) is required by zebrafish RGCs for acquisition of their correct morphological and functional connectivity in vivo. Teneurin-3 is expressed by RGCs and their presynaptic amacrine and postsynaptic tectal cell targets. Knockdown of Teneurin-3 leads to RGC dendrite stratification defects within the inner plexiform layer, as well as mistargeting of dendritic processes into outer portions of the retina. Moreover, a subset of RGC axons exhibits tectal laminar arborization errors. Finally, functional analysis of RGCs targeting the tectum reveals a selective deficit in the development of orientation selectivity after Teneurin-3 knockdown. These results suggest that Teneurin-3 plays an instructive role in the functional wiring of the vertebrate visual system. |
first_indexed | 2024-12-12T10:43:25Z |
format | Article |
id | doaj.art-bb01cbf53c7f427d852c99fb36ef290b |
institution | Directory Open Access Journal |
issn | 2211-1247 |
language | English |
last_indexed | 2024-12-12T10:43:25Z |
publishDate | 2013-11-01 |
publisher | Elsevier |
record_format | Article |
series | Cell Reports |
spelling | doaj.art-bb01cbf53c7f427d852c99fb36ef290b2022-12-22T00:26:59ZengElsevierCell Reports2211-12472013-11-015358259210.1016/j.celrep.2013.09.045Teneurin-3 Specifies Morphological and Functional Connectivity of Retinal Ganglion Cells in the Vertebrate Visual SystemParide Antinucci0Nikolas Nikolaou1Martin P. Meyer2Robert Hindges3MRC Centre for Developmental Neurobiology, King’s College London, Guy’s Campus, London SE1 1UL, UKMRC Centre for Developmental Neurobiology, King’s College London, Guy’s Campus, London SE1 1UL, UKMRC Centre for Developmental Neurobiology, King’s College London, Guy’s Campus, London SE1 1UL, UKMRC Centre for Developmental Neurobiology, King’s College London, Guy’s Campus, London SE1 1UL, UKA striking feature of the CNS is the precise wiring of its neuronal connections. During vertebrate visual system development, different subtypes of retinal ganglion cells (RGCs) form specific connections with their corresponding synaptic partners. However, the underlying molecular mechanisms remain to be fully elucidated. Here, we report that the cell-adhesive transmembrane protein Teneurin-3 (Tenm3) is required by zebrafish RGCs for acquisition of their correct morphological and functional connectivity in vivo. Teneurin-3 is expressed by RGCs and their presynaptic amacrine and postsynaptic tectal cell targets. Knockdown of Teneurin-3 leads to RGC dendrite stratification defects within the inner plexiform layer, as well as mistargeting of dendritic processes into outer portions of the retina. Moreover, a subset of RGC axons exhibits tectal laminar arborization errors. Finally, functional analysis of RGCs targeting the tectum reveals a selective deficit in the development of orientation selectivity after Teneurin-3 knockdown. These results suggest that Teneurin-3 plays an instructive role in the functional wiring of the vertebrate visual system.http://www.sciencedirect.com/science/article/pii/S2211124713005688 |
spellingShingle | Paride Antinucci Nikolas Nikolaou Martin P. Meyer Robert Hindges Teneurin-3 Specifies Morphological and Functional Connectivity of Retinal Ganglion Cells in the Vertebrate Visual System Cell Reports |
title | Teneurin-3 Specifies Morphological and Functional Connectivity of Retinal Ganglion Cells in the Vertebrate Visual System |
title_full | Teneurin-3 Specifies Morphological and Functional Connectivity of Retinal Ganglion Cells in the Vertebrate Visual System |
title_fullStr | Teneurin-3 Specifies Morphological and Functional Connectivity of Retinal Ganglion Cells in the Vertebrate Visual System |
title_full_unstemmed | Teneurin-3 Specifies Morphological and Functional Connectivity of Retinal Ganglion Cells in the Vertebrate Visual System |
title_short | Teneurin-3 Specifies Morphological and Functional Connectivity of Retinal Ganglion Cells in the Vertebrate Visual System |
title_sort | teneurin 3 specifies morphological and functional connectivity of retinal ganglion cells in the vertebrate visual system |
url | http://www.sciencedirect.com/science/article/pii/S2211124713005688 |
work_keys_str_mv | AT parideantinucci teneurin3specifiesmorphologicalandfunctionalconnectivityofretinalganglioncellsinthevertebratevisualsystem AT nikolasnikolaou teneurin3specifiesmorphologicalandfunctionalconnectivityofretinalganglioncellsinthevertebratevisualsystem AT martinpmeyer teneurin3specifiesmorphologicalandfunctionalconnectivityofretinalganglioncellsinthevertebratevisualsystem AT roberthindges teneurin3specifiesmorphologicalandfunctionalconnectivityofretinalganglioncellsinthevertebratevisualsystem |