A system of equations involving the fractional p-Laplacian and doubly critical nonlinearities

This article deals with existence of solutions to the following fractional pp-Laplacian system of equations: (−Δp)su=∣u∣ps*−2u+γαps*∣u∣α−2u∣v∣βinΩ,(−Δp)sv=∣v∣ps*−2v+γβps*∣v∣β−2v∣u∣αinΩ,\left\{\begin{array}{l}{\left(-{\Delta }_{p})}^{s}u={| u| }^{{p}_{s}^{* }-2}u+\frac{\gamma \alpha }{{p}_{s}^{* }}{|...

Full description

Bibliographic Details
Main Authors: Bhakta Mousomi, Perera Kanishka, Sk Firoj
Format: Article
Language:English
Published: De Gruyter 2023-09-01
Series:Advanced Nonlinear Studies
Subjects:
Online Access:https://doi.org/10.1515/ans-2023-0103
_version_ 1797682418540347392
author Bhakta Mousomi
Perera Kanishka
Sk Firoj
author_facet Bhakta Mousomi
Perera Kanishka
Sk Firoj
author_sort Bhakta Mousomi
collection DOAJ
description This article deals with existence of solutions to the following fractional pp-Laplacian system of equations: (−Δp)su=∣u∣ps*−2u+γαps*∣u∣α−2u∣v∣βinΩ,(−Δp)sv=∣v∣ps*−2v+γβps*∣v∣β−2v∣u∣αinΩ,\left\{\begin{array}{l}{\left(-{\Delta }_{p})}^{s}u={| u| }^{{p}_{s}^{* }-2}u+\frac{\gamma \alpha }{{p}_{s}^{* }}{| u| }^{\alpha -2}u{| v| }^{\beta }\hspace{0.33em}\hspace{0.33em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\hspace{1.0em}\\ {\left(-{\Delta }_{p})}^{s}v={| v| }^{{p}_{s}^{* }-2}v+\frac{\gamma \beta }{{p}_{s}^{* }}{| v| }^{\beta -2}v{| u| }^{\alpha }\hspace{0.33em}\hspace{0.33em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\hspace{1.0em}\end{array}\right. where s∈(0,1)s\in \left(0,1), p∈(1,∞)p\in \left(1,\infty ) with N>spN\gt sp, α,β>1\alpha ,\beta \gt 1 such that α+β=ps*≔NpN−sp\alpha +\beta ={p}_{s}^{* }:= \frac{Np}{N-sp} and Ω=RN\Omega ={{\mathbb{R}}}^{N} or smooth bounded domains in RN{{\mathbb{R}}}^{N}. When Ω=RN\Omega ={{\mathbb{R}}}^{N} and γ=1\gamma =1, we show that any ground state solution of the aforementioned system has the form (λU,τλV)\left(\lambda U,\tau \lambda V) for certain τ>0\tau \gt 0 and UU and VV are two positive ground state solutions of (−Δp)su=∣u∣ps*−2u{\left(-{\Delta }_{p})}^{s}u={| u| }^{{p}_{s}^{* }-2}u in RN{{\mathbb{R}}}^{N}. For all γ>0\gamma \gt 0, we establish existence of a positive radial solution to the aforementioned system in balls. When Ω=RN\Omega ={{\mathbb{R}}}^{N}, we also establish existence of positive radial solutions to the aforementioned system in various ranges of γ\gamma .
first_indexed 2024-03-11T23:59:27Z
format Article
id doaj.art-bb1166c98c4647d993dd88d6a9da9fe1
institution Directory Open Access Journal
issn 2169-0375
language English
last_indexed 2024-03-11T23:59:27Z
publishDate 2023-09-01
publisher De Gruyter
record_format Article
series Advanced Nonlinear Studies
spelling doaj.art-bb1166c98c4647d993dd88d6a9da9fe12023-09-18T06:31:15ZengDe GruyterAdvanced Nonlinear Studies2169-03752023-09-01231266177310.1515/ans-2023-0103A system of equations involving the fractional p-Laplacian and doubly critical nonlinearitiesBhakta Mousomi0Perera Kanishka1Sk Firoj2Department of Mathematics, Indian Institute of Science Education and Research Pune (IISER-Pune), Dr. Homi Bhabha Road, Pune – 411008, IndiaDepartment of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, USADepartment of Mathematics, Indian Institute of Science Education and Research Pune (IISER-Pune), Dr. Homi Bhabha Road, Pune – 411008, IndiaThis article deals with existence of solutions to the following fractional pp-Laplacian system of equations: (−Δp)su=∣u∣ps*−2u+γαps*∣u∣α−2u∣v∣βinΩ,(−Δp)sv=∣v∣ps*−2v+γβps*∣v∣β−2v∣u∣αinΩ,\left\{\begin{array}{l}{\left(-{\Delta }_{p})}^{s}u={| u| }^{{p}_{s}^{* }-2}u+\frac{\gamma \alpha }{{p}_{s}^{* }}{| u| }^{\alpha -2}u{| v| }^{\beta }\hspace{0.33em}\hspace{0.33em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\hspace{1.0em}\\ {\left(-{\Delta }_{p})}^{s}v={| v| }^{{p}_{s}^{* }-2}v+\frac{\gamma \beta }{{p}_{s}^{* }}{| v| }^{\beta -2}v{| u| }^{\alpha }\hspace{0.33em}\hspace{0.33em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\hspace{1.0em}\end{array}\right. where s∈(0,1)s\in \left(0,1), p∈(1,∞)p\in \left(1,\infty ) with N>spN\gt sp, α,β>1\alpha ,\beta \gt 1 such that α+β=ps*≔NpN−sp\alpha +\beta ={p}_{s}^{* }:= \frac{Np}{N-sp} and Ω=RN\Omega ={{\mathbb{R}}}^{N} or smooth bounded domains in RN{{\mathbb{R}}}^{N}. When Ω=RN\Omega ={{\mathbb{R}}}^{N} and γ=1\gamma =1, we show that any ground state solution of the aforementioned system has the form (λU,τλV)\left(\lambda U,\tau \lambda V) for certain τ>0\tau \gt 0 and UU and VV are two positive ground state solutions of (−Δp)su=∣u∣ps*−2u{\left(-{\Delta }_{p})}^{s}u={| u| }^{{p}_{s}^{* }-2}u in RN{{\mathbb{R}}}^{N}. For all γ>0\gamma \gt 0, we establish existence of a positive radial solution to the aforementioned system in balls. When Ω=RN\Omega ={{\mathbb{R}}}^{N}, we also establish existence of positive radial solutions to the aforementioned system in various ranges of γ\gamma .https://doi.org/10.1515/ans-2023-0103fractional p-laplaciandoubly criticalground stateexistencesystemleast energy solutionnehari manifold35b0935b3335e2035d3035j5045k05
spellingShingle Bhakta Mousomi
Perera Kanishka
Sk Firoj
A system of equations involving the fractional p-Laplacian and doubly critical nonlinearities
Advanced Nonlinear Studies
fractional p-laplacian
doubly critical
ground state
existence
system
least energy solution
nehari manifold
35b09
35b33
35e20
35d30
35j50
45k05
title A system of equations involving the fractional p-Laplacian and doubly critical nonlinearities
title_full A system of equations involving the fractional p-Laplacian and doubly critical nonlinearities
title_fullStr A system of equations involving the fractional p-Laplacian and doubly critical nonlinearities
title_full_unstemmed A system of equations involving the fractional p-Laplacian and doubly critical nonlinearities
title_short A system of equations involving the fractional p-Laplacian and doubly critical nonlinearities
title_sort system of equations involving the fractional p laplacian and doubly critical nonlinearities
topic fractional p-laplacian
doubly critical
ground state
existence
system
least energy solution
nehari manifold
35b09
35b33
35e20
35d30
35j50
45k05
url https://doi.org/10.1515/ans-2023-0103
work_keys_str_mv AT bhaktamousomi asystemofequationsinvolvingthefractionalplaplaciananddoublycriticalnonlinearities
AT pererakanishka asystemofequationsinvolvingthefractionalplaplaciananddoublycriticalnonlinearities
AT skfiroj asystemofequationsinvolvingthefractionalplaplaciananddoublycriticalnonlinearities
AT bhaktamousomi systemofequationsinvolvingthefractionalplaplaciananddoublycriticalnonlinearities
AT pererakanishka systemofequationsinvolvingthefractionalplaplaciananddoublycriticalnonlinearities
AT skfiroj systemofequationsinvolvingthefractionalplaplaciananddoublycriticalnonlinearities